R. Merris, Nonzero decomposable symmetrized tensors,
Linear Algebra Appl. 17 (1977), 287-292. AMS Notices
23 (1976), A-66. Math. Reviews
58 #5889.
Let alpha and beta be partitions of the positive integer m.
Let chi be the irreducible complex character of S_m corresponding
to the partition alpha and lambda be the permutation character of
S_m induced from the principal (identically 1) character on the
Young subgroup of S_m corresponding to beta. It is shown that
chi is a component of lambda if and only if alpha majorizes
beta, confirming a conjecture of E. Snapper, Group characters and
nonnegative integral matrices, J. Algebra 19 (1971), 520-535.
As an application, let V be a vector space with a basis e1, e2, ... ,
en. Let z be the tensor product of some m of these basis vectors,
chosen with replacement. Let z* be the corresponding decomposable
symmetrized tensor afforded by S_m and chi. Then z* is nonzero if
and only if alpha majorizes the "m-tuple of multiplicities" of z.
Further applications to immanants can be found in publication
34. Subsequent work in this area is
summarized in [R. Merris, Multilinear Algebra,
Gordon & Breach, Amsterdam, 1997, pp 169-172].
Among the publications citing this
article are:
G. H. Chan and M. H. Lim, Canad. Math. J. 32
(1980), 957-968.
J. A. Dias da Silva, Linear Algebra Appl. 40
(1981), 161-182.
D. B. Hunter, Linear & Multilinear Algebra 13
(1983), 357-366.
G. H. Chan and M. H. Lim, Linear & Multilinear
Algebra 19 (1986), 1-10.
G. H. Chan and M. H. Lim, Linear & Multilinear
Algebra 19 (1986), 149-165.
J. A. Dias da Silva and A. Fonseca, Linear &
Multilinear Algebra 20 (1987), 203-218.
C. R. Johnson and S. Pierce, Linear Algebra Appl.
102 (1988), 55-79.
C. Gamas, Linear Algebra Appl. 108 (1988), 83-119.
A. Fonseca, Linear & Multilinear Algebra
24 (1989), 191-198.
J. A. Dias da Silva, Linear & Multilinear Algebra
27 (1990), 25-32.
J. A. Dias da Silva and A. Fonseca, Linear &
Multilinear Algebra 27 (1990), 49-55.
T. Pate, Linear & Multilinear Algebra 28 (1990),
175-184.
J. A. Dias da Silva, Linear Algebra Appl. 150
(1991), 475-481.
J. Wu, Linear Algebra Appl. 257 (1997), 193-200.
R. Bhatia and J. A. Dias da Silva, Linear Algebra Appl.
341 (2002), 391-402.
C. Bessenrodt, M. R. Pournaki, and A. Reifegerste, Linear
Algebra Appl. 370 (2003), 369-374.
C. Caldeira and J. A. Dias da Silva, Linear & Multilinear
Algebra 51 (2003), 339-359.
J. A. Dias da Silva and M. M. Torres, Linear Algebra Appl.
401 (2005), 77-107.
Chi-Kwong Li and Tin-Yau Tam, Linear Algebra Appl. 401
(2005), 173-191.