R. Merris, Nonzero decomposable symmetrized tensors, Linear Algebra Appl. 17 (1977), 287-292. AMS Notices 23 (1976), A-66. Math. Reviews 58 #5889.


Let alpha and beta be partitions of the positive integer m. Let chi be the irreducible complex character of S_m corresponding to the partition alpha and lambda be the permutation character of S_m induced from the principal (identically 1) character on the Young subgroup of S_m corresponding to beta. It is shown that chi is a component of lambda if and only if alpha majorizes beta, confirming a conjecture of E. Snapper, Group characters and nonnegative integral matrices, J. Algebra 19 (1971), 520-535. As an application, let V be a vector space with a basis e1, e2, ... , en. Let z be the tensor product of some m of these basis vectors, chosen with replacement. Let z* be the corresponding decomposable symmetrized tensor afforded by S_m and chi. Then z* is nonzero if and only if alpha majorizes the "m-tuple of multiplicities" of z. Further applications to immanants can be found in publication 34. Subsequent work in this area is summarized in [R. Merris, Multilinear Algebra, Gordon & Breach, Amsterdam, 1997, pp 169-172]. Among the publications citing this article are:

  • G. H. Chan and M. H. Lim, Canad. Math. J. 32 (1980), 957-968.
  • J. A. Dias da Silva, Linear Algebra Appl. 40 (1981), 161-182.
  • D. B. Hunter, Linear & Multilinear Algebra 13 (1983), 357-366.
  • G. H. Chan and M. H. Lim, Linear & Multilinear Algebra 19 (1986), 1-10.
  • G. H. Chan and M. H. Lim, Linear & Multilinear Algebra 19 (1986), 149-165.
  • J. A. Dias da Silva and A. Fonseca, Linear & Multilinear Algebra 20 (1987), 203-218.
  • C. R. Johnson and S. Pierce, Linear Algebra Appl. 102 (1988), 55-79.
  • C. Gamas, Linear Algebra Appl. 108 (1988), 83-119.
  • A. Fonseca, Linear & Multilinear Algebra 24 (1989), 191-198.
  • J. A. Dias da Silva, Linear & Multilinear Algebra 27 (1990), 25-32.
  • J. A. Dias da Silva and A. Fonseca, Linear & Multilinear Algebra 27 (1990), 49-55.
  • T. Pate, Linear & Multilinear Algebra 28 (1990), 175-184.
  • J. A. Dias da Silva, Linear Algebra Appl. 150 (1991), 475-481.
  • J. Wu, Linear Algebra Appl. 257 (1997), 193-200.
  • R. Bhatia and J. A. Dias da Silva, Linear Algebra Appl. 341 (2002), 391-402.
  • C. Bessenrodt, M. R. Pournaki, and A. Reifegerste, Linear Algebra Appl. 370 (2003), 369-374.
  • C. Caldeira and J. A. Dias da Silva, Linear & Multilinear Algebra 51 (2003), 339-359.
  • J. A. Dias da Silva and M. M. Torres, Linear Algebra Appl. 401 (2005), 77-107.
  • Chi-Kwong Li and Tin-Yau Tam, Linear Algebra Appl. 401 (2005), 173-191.