Multilinear Algebra, Gordon & Breach, Amsterdam, 1997

ISBN 90-5699-078-0. Math. Reviews 98i:15002. Available from Barnes & Noble and Amazon.com.


Ideally suited for a fourth year undergraduate "capstone" course, Multilinear Algebra is also an attractive choice for a beginning graduate course and/or as a research reference. The first four chapters consist of self-contained introductions to those prerequisite notions beyond the standard third year undergraduate courses in abstract and linear algebra.

Apart from applications to graph theory and the "excursion" into Invariant Theory, the use of Schur functions as a unifying vehicle in the final chapter may be of particular interest to combinatorialists.


Contents

1. Partitions (with Applications to Graphs)

2. Inner Product Spaces (with Applications to Graphs)

3. Permutation Groups (with Applications to Symmetry)

4. Group Representation Theory

5. Tensor Spaces

6. Symmetry Classes of Tensors (with Applications to the Theory of Enumeration)

7. Generalized Matrix Functions (with an Excursion into Invariant Theory)

8. The Rational Representations of GL(n,C) (with Applications to Graphs)


Please E-mail errata suggestions to the author: merris@csuhayward.edu


Among the related articles not available to the author at the time of publication are

  • Xin Jie Wang, The MPW problem for a class of matrix functions derived from zonal spherical functions (Chinese, English summary), J. Huazhong Univ. Sci. Tech. 23 (1995), 124-128.
  • G. H. Chan and M. H. Lim, Linear preservers of decomposable tensors, Linear & Multilinear Algebra 40 (1995), 171-181.
  • Maria do Rosario Fernandes, Pairs of matrices that have the same immanant, Linear & Multilinear Algebra 40 (1996), 193-201.
  • Thomas H. Pate, Group algebras, monotonicity, and the Lieb permanent inequality, Linear & Multilinear Algebra 40 (1996), 207-220.
  • D. W. Lewis, Trace forms, Kronecker sums, and the shuffle matrix, Linear & Multilinear Algebra 40 (1996), 221-227.
  • M. Shahryari and M. A. Shahabi Shojaei, On certain symmetry classes of tensors, Pure Math. and Appl. 7 (1996), 323-331.
  • J. A. Dias da Silva, Flags and equality of tensors, Linear Algebra Appl. 232 (1996), 55-75.
  • J. A. Dias da Silva, Multilinear algebra: recent applications, Linear Algebra Appl. 241/243 (1996), 211-223.
  • M. Purificao Coelho, Linear preserves of the permanent on symmetric matrices, Linear & Multilinear Algebra 41 (1996), 1-8.
  • Robert Grone and Stephen Pierce, Decomposably non-negative matrices, Linear & Multilinear Algebra 41 (1996), 63-79.
  • J. M. Garcia, L. O. de Elguea and M. J. Sodupe, Linear Algebra Appl. 249 (1996), 289-310.
  • Thomas H. Pate, A machine for producing inequalities involving immanants and other generalized matrix functions, Linear Algebra Appl. 254 (1997), 427-466.
  • Thomas H. Pate, Exterior products, elementary symmetric functions, and the Fischer determinant inequality, Linear Algebra Appl. 255 (1997), 203-242.
  • Ming-Peng Gong, Semigroups defined by generalized Schur functions, Linear Algebra Appl. 257 (1997), 65-75.
  • Jun Wu, A partial ordering of CS_m defined by generalized matrix functions, Linear Algebra Appl. 257 (1997), 193-200.
  • Onn Chan and Tao-Kai Lam, Hook immanantal inequalities for Laplacians of trees, Linear Algebra Appl. 261 (1997), 23-47.
  • Tian-Gang Lei, Generalized Schur functions and generalized decomposable tensors, Linear Algebra Appl. 263 (1997), 311-332.
  • K. K. Nambiar, Hall's theorem and compound matrices, Math. Comput. Modelling 25 (1997), 23-24.
  • Leroy B. Beasley and J. A. Dias da Silva, Orthogonal decomposable symmetrized tensors, Linear & Multilinear Algebra 42 (1997), 1-21.
  • George W. Soules, Nonconvexity of the permanent, Linear & Multilinear Algebra 42 (1997), 89-91.
  • M. Antonia Duffner, A note on singular matrices satisfying certain polynomial identities, Linear & Multilinear Algebra 42 (1997), 213-219.
  • M. H. Lim, Linear preservers of decomposable symmetric tensors, Linear & Multilinear Algebra 42 (1997), 291-302.
  • F. C. Silva and M. M. Torres, Rank partitions under small perturbations, Linear & Multilinear Algebra 43 (1997), 299-313.
  • Onn Chan, Tao-Kai Lam, and Russell Merris, The Wiener number as an immanant of the Laplacian of molecular graphs, J. Chem. Inf. & Comp. Sci. 37 (1997), 762-765.
  • J. A. Dias da Silva, Rosario Fernandes, and Amelia Fonseca, The covering number of the elements of a matroid and generalized matrix functions, Linear Algebra Appl. 271 (1998), 191-219.
  • Onn Chan and Tao-Kai Lam, Hook immanantal inequalities for trees explained, Linear Algebra Appl. 273 (1998), 119-131.
  • Tian-Gang Lei and Bo-Ying Wang, Indices and nonzero decomposable elements of a symmetry class of tensors, Linear Algebra Appl. 279 (1998), 21-30.
  • M. Fiedler, Additive compound graphs, Discrete Math. 87 (1998), 97-108.
  • M. Shahryari and M. A. Shahabi, On a permutation character of S_m, Linear & Multilinear Algebra 44 (1998), 45-52.
  • Thomas H. Pate, Row appending maps, [psi]-functions, and immanant inequalities for hermitian positive semi-definite matrices, Proc. London Math. Soc. 76 (1998), 307-358.
  • M. R. Darafsheh and M. R. Pournaki, On the dimensions of cyclic symmetry classes of tensors, J. Algebra 205 (1998), 317-325.
  • Thomas H. Pate, Extreme rays for cones of Hermitian matrix functions that are non-negative on the positive semi-definite matrices, Linear Algebra Appl. 291 (1999), 201-225.
  • Tian-Gang Lei, Notes on Cartesian symmetry classes and generalized trace functions, Linear Algebra Appl. 292 (1999), 281-288.
  • Tian-Gang Lei, Positive semi-definiteness in a group algebra, Linear Algebra Appl. 292 (1999), 289-296.
  • Amelia Fonseca, On the equality of families of decomposable symmetrized tensors, Linear Algebra Appl. 293 (1999), 1-14.
  • Rosario Fernandes, The covering number of elements of a matroid and associated transformations, Linear Algebra Appl. 298 (1999), 51-71.
  • Onn Chan and Bee-San Ng, Hook immanantal inequalities for Hadamard's function, Linear Algebra Appl. 299 (1999), 175-190.
  • M. Shahryari and M. A. Shahabi, Modular symmetry classes of tensors, Turk. J. Math. 23 (1999), 417-433.
  • M. R. Darafsheh and M. R. Pournaki, On the orthogonal basis of the symmetry class of tensors associated with the dicyclic group, Linear & Multilinear Algebra 47 (2000), 137-149.
  • Carlos Gamas, Spherical functions and immanants, Linear & Multilinear Algebra 47 (2000), 151-173.
  • M. R. Darafsheh and M. R. Pournaki, Computation of the dimensions of symmetry classes of tensors associated with the finite two dimensional projective special linear groups, Applicable Algebra in Engr. Comm. & Computing 10 (2000), 237-250.
  • M. R. Darafsheh and N. S. Poursalavati, Some results on the orthogonal basis of a symmetry class of tensors, Pure Math. & Appl. 11 (2000), 33-41.
  • M. A. Shahabi, K. Azizi, and M. H. Jafari, On the orthogonal basis of symmetry classes of tensors, J. Algebra 237 (2001), 637-646.
  • M. R. Pournaki, On the orthogonal basis of the symmetry classes of tensors associated with certain characters, Linear Algebra Appl. 336 (2001), 255-260.
  • Rosario Fernandes, On the kernel of the derivation operator, Linear Algebra Appl. 337 (2001), 121-138.
  • M. Purificacao Coelho and M. Antonia Duffner, Subspaces where an immanant is convertible into its conjugate, Linear & Multilinear Algebra 48 (2001), 383-408.
  • D. E. White and S. G. Williamson, Research Problem: Combinatorial and Multilinear Aspects of Sign-balanced Posets, Linear & Multilinear Algebra 49 (2001), 169-181.
  • Chi-Kwong Li and Alexandru Zaharia, Induced operators on symmetry classes of tensors, Trans. Amer. Math. Soc. 354 (2001), 807-836.
  • M. R. Darafsheh and N. S. Poursalavati, On the existence of the orthogonal basis of the symmetry class of tensors associated with certain groups Science University of Tokyo J. Math 37 (2001), 1-17.
  • J. A. Dias da Silva, Colorings and equality of tensors, Linear Algebra Appl. 342 (2002), 79-91.
  • R. Bhatia and J. A. Dias da Silva, Variation of induced linear operators, Linear Algebra Appl. 341 (2002), 391-402.
  • J. A. Dias da Silva, Colorings and equality of tensors, Linear Algebra Appl. 342 (2002), 79-91.
  • H. F. da Cruz and J. A. Dias da Silva, Equality of immanantal decomposable tensors, II, Linear Algebra Appl. 395 (2005), 95-119.
  • S. McGarraghy, Symmetric powers of symmetric bilinear forms, Algebra Colloquium 12 (2005), 41-57.
  • H. F. da Cruz and J. A. Dias da Silva, Equality of immanantal decomposable tensors, Linear Algebra Appl. 401 (2005), 29-46.
  • J. A. Dias da Silva and Maria M. Torres, On the orthogonal dimension of orbital sets, Linear Algebra Appl. 401 (2005), 77-107.
  • Chi-Kwong Li and Tin-Yau Tam, Operator properties of T and K(T), Linear Algebra Appl. 401 (2005), 173-191.