R. Merris, Equality of decomposable symmetrized tensors, Canadian
J. Math. 27 (1975), 1022-1024. Math Reviews 52 #5715.
The main result of this note is that a necessary condition for
two decomposable symmetrized tensors to be equal is that the
constituent vectors of each of them
span the same vector space. Subsequent work in this area is
summarized in [R. Merris, Multilinear
Algebra, Gordon & Breach, Amsterdam, 1997, pp 233-234].
Among the publications citing
this article are
J. A. Dias da Silva, Linear Algebra Appl. 24 (1979),
85-92.
G. N. de Oliveira and J. A. Dias da Silva, Linear Algebra
Appl. 28 (1979), 161-176.
J. P. Chollet, Equality of Symmetrized Decomposable Tensors,
Doctoral Dissertation, Univ. California, Santa Barbara, 1979.
G. N. de Oliveira and J. A. Dias da Silva, Linear Algebra
Appl. 49 (1983), 191-219.
G. N. de Oliveira, A. P. Santana, and J. A. Dias da Silva,
Linear & Multilinear Algebra 14 (1983), 157-163.
M. Marcus and J. Chollet, Linear & Multilinear Algebra
13 (1983), 253-266.
M. Marcus and J. Chollet, Linear & Multilinear Algebra
19 (1986), 133-140.
G. N. de Oliveira and J. A. Dias da Silva, Portugaliae Math.
43 (1985-86), 77-92.
J. A. Dias da Silva and Ma. da Purificacao Coelho, Linear Algebra
Appl. 94 (1987), 165-179.
J. A. Dias da Silva and Ma. da Purificacao Coelho, Linear Algebra
Appl. 140 (1990), 1-11.
J. A. Dias da Silva, Linear Algebra Appl. 150 (1991), 475-481.
T. Lei, Acta Mathematica Sinica (Chinese) 39 (1996), 488-494.
M.-P. Gong, Linear Algebra Appl. 236 (1996), 113-129.
J. A. Dias da Silva, Linear Algebra Appl. 245 (1996), 353-372.
M.-P. Gong, Linear Algebra Appl. 257 (1997), 65-75.
T.-G. Lei, Linear Algebra Appl. 263 (1997), 311-332.