R. Merris, Equality of decomposable symmetrized tensors, Canadian J. Math. 27 (1975), 1022-1024. Math Reviews 52 #5715.


The main result of this note is that a necessary condition for two decomposable symmetrized tensors to be equal is that the constituent vectors of each of them span the same vector space. Subsequent work in this area is summarized in [R. Merris, Multilinear Algebra, Gordon & Breach, Amsterdam, 1997, pp 233-234]. Among the publications citing this article are

  • J. A. Dias da Silva, Linear Algebra Appl. 24 (1979), 85-92.
  • G. N. de Oliveira and J. A. Dias da Silva, Linear Algebra Appl. 28 (1979), 161-176.
  • J. P. Chollet, Equality of Symmetrized Decomposable Tensors, Doctoral Dissertation, Univ. California, Santa Barbara, 1979.
  • G. N. de Oliveira and J. A. Dias da Silva, Linear Algebra Appl. 49 (1983), 191-219.
  • G. N. de Oliveira, A. P. Santana, and J. A. Dias da Silva, Linear & Multilinear Algebra 14 (1983), 157-163.
  • M. Marcus and J. Chollet, Linear & Multilinear Algebra 13 (1983), 253-266.
  • M. Marcus and J. Chollet, Linear & Multilinear Algebra 19 (1986), 133-140.
  • G. N. de Oliveira and J. A. Dias da Silva, Portugaliae Math. 43 (1985-86), 77-92.
  • J. A. Dias da Silva and Ma. da Purificacao Coelho, Linear Algebra Appl. 94 (1987), 165-179.
  • J. A. Dias da Silva and Ma. da Purificacao Coelho, Linear Algebra Appl. 140 (1990), 1-11.
  • J. A. Dias da Silva, Linear Algebra Appl. 150 (1991), 475-481.
  • T. Lei, Acta Mathematica Sinica (Chinese) 39 (1996), 488-494.
  • M.-P. Gong, Linear Algebra Appl. 236 (1996), 113-129.
  • J. A. Dias da Silva, Linear Algebra Appl. 245 (1996), 353-372.
  • M.-P. Gong, Linear Algebra Appl. 257 (1997), 65-75.
  • T.-G. Lei, Linear Algebra Appl. 263 (1997), 311-332.