Robert Grone and Russell Merris,
The Laplacian spectrum of a graph II,
SIAM J. Discrete Math. 7 (1994),
221-229. Research supported by the National Security Agency under
grant no. MDA904-90-H-4024. Math Reviews 95d:05085.
This article is a continuation of publication
79:
If G is a graph, its Laplacian matrix, L(G) = D(G) - A(G), is the
difference of the diagonal matrix of its vertex degrees and its
0-1 adjacency matrix. The first section of this article is devoted
to properties of Laplacian integral graphs, those for which
the Laplacian spectrum consists entirely of integers. The second
section relates the degree sequence and Laplacian spectrum through
majorization. The third section introduces the notion of a d-cluster
using it to obtain bounds on the multiplicity of d in the
spectrum of L(G), overlapping the work of Isabel Faria [below].
The item in the article that has, perhaps, attracted the most
attention is
Conjecture 2. If G is a connected graph, then the conjugate
of its degree sequence majorizes its spectrum.
In a recent (still unpublished) paper,
Tamon Stephen has confirmed the conjecture for a family
that includes the regular graphs and the trees.
Among the publications citing
this article are:
R. Grone, Linear & Multilinear
Algebra 39 (1995), 133-136.
I. Faria,
Linear Algebra Appl. 229 (1995), 15-35.
D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs,
3rd. ed., Johann Ambrosius Barth, Heidelberg, 1995.
D. Cvetkovic, P. Rowlinson, and S. Simic, Eigenspaces of Graphs,
Encyclopedia of Mathematics and Its Applications 66, Cambridge
University Press, 1997.
L. Halbeisen and N. Hungerbuhler, J. Graph Theory
31 (1999), 255-265.
W. So, Linear & Multilinear Algebra 46 (1999),
193-198.
J.-S. Li and Y.-L. Pan, Linear & Multilinear Algebra
48 (2000), 117-121.
L. Halbeisen and N. Hungerbuhler, European J. Combinatorics
21 (2000), 641-650.
H. Christianson and V. Reiner, Linear Algebra Appl. 349 (2002),
233-244.
A. M. Duval and V. Reiner, Trans. Amer. Math. Soc. 354
(2002), 4313-4344.
D. Stevanovic, Linear Algebra Appl. 360 (2003), 35-42.
X.-D. Zhang and R. Luo, Linear Algebra Appl. 362 (2003),
109-119.
Y. L. Pan & Y. P. Hou, Linear & Multilinear Algebra 51 (2003),
31-38.
Y. Z. Fan, Linear & Multilinear Algebra 51 (2003),
147-154.
I. Gutman, MATCH-Commun. in Math. & Comput. Chem. 47 (2003),
133-140.
Yi-Zheng Fan, Linear Algebra Appl. 374 (2003), 307-316.
W. J. Xiao and I. Gutman, Theor. Chem. Acc. 110 (2003),
284-289.
I. Gutman, J. Serbian Chem. Soc. 68 (2003), 949-952.
K. Ch. Das, Linear Algebra Appl. 376 (2004), 173-186.
Xiao-Dong Zhang, Linear Algebra Appl. 376 (2004), 207-213.
K. Ch. Das, Linear Algebra Appl. 384 (2004), 155-169.
Xiao-Dong Zhang, Linear Algebra Appl. 385 (2004), 369-379.
J.-S. Li and Y.-L. Pan, Acta Math. Sinica-English series
20 (2004), 803-806.
K. Ch. Das, Computers & Math. Appl. 48 (2004), 715-724.
R. J. O'Callaghan and D. R. Bull, IEEE Trans. Image
Processing 14 (2005), 49-62.
Y. Teranishi, Discrete Math. 290 (2005), 259-267.
R. Agaev and P. Chebotarev, Linear Algebra Appl.
399 (2005), 157-168.
Mei Lu, Huiqing Liu, and Feng Tian, Linear Algebra Appl.
402 (2005), 390-396.
S. Kirkland, Discrete Math. 295 (2005), 75-90.