R. Merris, Degree maximal graphs are Laplacian integral,
Linear Algebra Appl. 199 (1994), 381-389.
Research supported by the National Security Agency under
grant no. MDA904-90-H-4024. Math Reviews 95e:05083.
A degree maximal (or threshold) graph
with m edges is one
whose degree sequence is maximal, with respect to majorization,
among the graphic partitions of 2m. The main result of this
article is that G is a threshold graph if and only if its
Laplacian spectrum is equal to the conjugate of its degree
sequence. Among the publications citing this article are:
D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of
Graphs, 3rd. ed., Johann Ambrosius Barth Verlag,
Heidelberg, 1995.
W. So, Rank one perturbation and its application to the
Laplacian spectrum of a graph, Linear & Multilinear Algebra
46 (1999), 193-198.
A. Berman and X.-D. Zhang, Linear & Multilinear Algebra 47 (2000),
307-311.
S. J. Kirkland, J. J. Molitierno, and M. Neumann,
Linear & Multilinear Algebra 48 (2001), 237-246.
S. J. Kirkland, J. J. Molitierno, M. Neumann, and B. L. Shader,
Linear Algebra Appl. 341 (2002), 45-56.
F. Yizheng, Linear & Multilinear Algebra 50 (2002),
133-142.
D. D. Olesky, A. Roy, and P. van den Driessche, Linear
Algebra Appl. 346 (2002), 109-130.
H. Christianson and V. Reiner, Linear Algebra Appl. 349 (2002),
233-244.
A. M. Duval and V. Reiner, Trans. Amer. Math. Soc. 354
(2002), 4313-4344.
Y. Z. Fan, Linear & Multilinear Algebra 50 (2002),
133-142.
S. Friedland and R. Nabben, J. Graph Theory 41
(2002), 1-17.
R. B. Ellis, III, PhD Dissertation, UC San Diego, 2002.
[
.ps;
.pdf]
Y. Z. Fan, Linear & Multilinear Algebra 51 (2003),
147-154.
Y. Z. Fan, Linear Algebra Appl. 374 (2003), 307-316.
J. L. Martin and V. Reiner, J. Combinatorial Theory A104
(2003), 287-300.
S. Kirkland, Discrete Math. 295 (2005), 75-90.