R. Grone
and R. Merris, Ordering trees by algebraic connectivity, Graphs &
Combinatorics 6 (1990), 229-237.
Research supported by Office of Naval Research contract 85-K-0335.
Math Reviews 92a:05086.
Suppose G is a graph on n vertices. If D(G) =
diag(d1,d2, ... ,dn) is the diagonal matrix of its vertex degrees and
A(G) its adjacency matrix, then the Laplacian matrix L(G)
= D(G) - A(G). The algebraic connectivity, a(G), is the
second smallest eigenvalue of L(G). This article addresses the ordering
of trees by their algebraic connectivities.
Among the pubications that cite this article are:
R. Grone, Linear Algebra Appl. 150 (1991), 167-178.
B. Mohar, Discrete Math. 109 (1992), 171-183.
D. Cvetkovic and M. Petric, Univ. Beograd. Publ. Elektrotehn. Fak.
4 (1993), 51-69.
D. Cvetkovic and S. Simic, FILOMAT (Nis) 9 (1995), 449-472.
D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs,
3rd
ed., Johann Ambrosius Barth Verlag, Heidelberg, 1995.
S. Kirkland and M. Neumann, Linear & Multilinear Algebra
42 (1997), 187-203.
S. Kirkland and S. Fallat, Linear & Multilinear Algebra
44 (1998), 131-148.
S. Fallat and S. Kirkland,
Elec. J. Linear Algebra 3 (1998), 48-74.
G. Zimmerman, Linear & Multilinear Algebra 45 (1998), 161-187.
J. S. Tan, Proc. Japan Acad. Ser. A - Math. Sciences 75
(1999), 188-193.
S. M. Fallat, S. Kirkland, and S. Pati, Discrete Math. 254 (2002),
115-142.
J.-M. Guo, Linear Algebra Appl. 362 (2003), 121-128.
J.-M. Guo, Linear Algebra Appl. 368 (2003), 379-385.
I. Gutman, D. Vidovic, and B. Furtula, Indian J. Chem. Sect. A
42 (2003), 1272-1278.
Xiao-Dong Zhang, Linear Algebra Appl. 385 (2004), 369-379.
D. Barash, Bioinformatics 20 (2004), 1861-1869.