R. Grone and R. Merris, Ordering trees by algebraic connectivity, Graphs & Combinatorics 6 (1990), 229-237. Research supported by Office of Naval Research contract 85-K-0335. Math Reviews 92a:05086.


Suppose G is a graph on n vertices. If D(G) = diag(d1,d2, ... ,dn) is the diagonal matrix of its vertex degrees and A(G) its adjacency matrix, then the Laplacian matrix L(G) = D(G) - A(G). The algebraic connectivity, a(G), is the second smallest eigenvalue of L(G). This article addresses the ordering of trees by their algebraic connectivities.


Among the pubications that cite this article are:

  • R. Grone, Linear Algebra Appl. 150 (1991), 167-178.
  • B. Mohar, Discrete Math. 109 (1992), 171-183.
  • D. Cvetkovic and M. Petric, Univ. Beograd. Publ. Elektrotehn. Fak. 4 (1993), 51-69.
  • D. Cvetkovic and S. Simic, FILOMAT (Nis) 9 (1995), 449-472.
  • D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs, 3rd ed., Johann Ambrosius Barth Verlag, Heidelberg, 1995.
  • S. Kirkland and M. Neumann, Linear & Multilinear Algebra 42 (1997), 187-203.
  • S. Kirkland and S. Fallat, Linear & Multilinear Algebra 44 (1998), 131-148.
  • S. Fallat and S. Kirkland, Elec. J. Linear Algebra 3 (1998), 48-74.
  • G. Zimmerman, Linear & Multilinear Algebra 45 (1998), 161-187.
  • J. S. Tan, Proc. Japan Acad. Ser. A - Math. Sciences 75 (1999), 188-193.
  • S. M. Fallat, S. Kirkland, and S. Pati, Discrete Math. 254 (2002), 115-142.
  • J.-M. Guo, Linear Algebra Appl. 362 (2003), 121-128.
  • J.-M. Guo, Linear Algebra Appl. 368 (2003), 379-385.
  • I. Gutman, D. Vidovic, and B. Furtula, Indian J. Chem. Sect. A 42 (2003), 1272-1278.
  • Xiao-Dong Zhang, Linear Algebra Appl. 385 (2004), 369-379.
  • D. Barash, Bioinformatics 20 (2004), 1861-1869.