R. Merris, The distance spectrum of a tree, J. Graph Theory
14 (1990), 365-369. AMS Abstracts 10 (1989), 401.
Math Reviews 91h: 05085.
The main result of this article is an interlacing inequality
involving the Distance and Laplacian eigenvalues of a tree. One
consequence is a new proof that the chemical Wiener index of a
tree on n vertices is n times the sum of the reciprocals of its
nonzero Laplacian eigenvalues. (See number 78.)
Karen L. Collins [Discrete Math. 122 (1993), 103-112]
has explained what was not clear to me in the sentence before
Corollary 3 on p. 368.
Among the
publications citing this article are
R. Grone, Linear Algebra Appl. 150 (1991), 167-178.
B. Mohar, Discrete Math. 109 (1992), 171-183.
K. L. Collins, Discrete Math. 122 (1993), 103-112.
B. Mohar and S. Poljak, Combinatorial and Graph-Theoretical
Problems in Linear Algebra (R. A. Brualdi, et. al., eds.),
Springer-Verlag, 1993, pp 107-151.
I. Gutman, Y. N. Yeh, S. L. Lee, and Y. L. Luo, Indian J.
Chemistry (Section A), 32 (1993), 651-661.
I. Gutman, S. L. Lee, G. H. Chu, and Y. L. Luo, Indian J.
Chemistry (Section A), 33 (1994), 603-608.
R. C. Entringer, A. Meir, J. W. Moon, and L. A. Szekely,
Australasian J. Combinatorics 10 (1994), 211-224.
S. Markovic, I. Gutman, and Z. Bancevic, J. Serbian
Chemical Soc. 60 (1995), 633-636.
J. W. Moon, Linear & Multilinear Algebra 39 (1995),
191-194.
D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of
Graphs, 3rd ed., Johann Ambrosius Barth,
Heidelberg, 1995.
R. B. Bapat, The Mathematics Student [Madras] 65 (1996),
214-223.
I. Gutman and B. Mohar, J. Chem. Inf. & Comp. Sci.
36 (1996), 982-985.
R. B. Bapat, Linear & Multilinear Algebra 42 (1997),
159-167.
A. A. Dobrynin, R. Entringer, and I. Gutman, Acta Applicandae
Math 66 (2001), 211-249.
R. Bapat, S. J. Kirkland, and M. Neumann, Linear Algebra Appl.
401 (2005), 193-209.