R. Merris, The Laplacian permanental polynomial for trees, Czech. Math. J. 32 (1982), 397-403. Math Reviews 84a:05047.


The main result of this article is a combinatorial interpretation for the coefficients in the Laplacian permanental polynomial, per(xI-L(T)), of a tree T. It follows, for any connected graph G on n vertices, that per(L(G)) > 2(n-1), with equality if and only if G is the star. This affirmatively resolves a conjecture in article 49. Among the publications citing this paper are:

  • R. A. Brualdi and J. L. Goldwasser, Discrete Math. 48 (1984), 1-21.
  • I. Faria, Linear Algebra Appl. 64 (1985), 255-265.
  • D. Cvetkovic and M. Doob, Linear & Multilinear Algebra 18 (1985), 153-181.
  • R. B. Bapat, Linear Algebra Appl. 74 (1986), 219-223.
  • A. Vrba, Czech. Math. J. 36 (1986), 7-17.
  • A. Vrba, Linear & Multilinear Algebra 19 (1986), 335-346.
  • J. L. Goldwasser, Discrete Math. 61 (1986), 197-212.
  • H. Minc, Linear & Multilinear Algebra 21 (1987), 109-148.
  • D. Cvetkovic, M. Doob, I. Gutman, and A. Torgasev, Recent Results in the Theory of Graph Spectra, North-Holland, 1988.
  • V. Strok, Permanents: Theory and Appl. [Russian], Krasnoyarsk Politekhn. Inst., 1990, 73-78.
  • B. Mohar, The Laplacian spectrum of graphs, Y. Alavi, G. Chartrand, O. R. Ollermann, and A. J. Schwenk, eds., Graph Theory, Combinatorics, and Applications, Wiley, 1991, pp 871-898.
  • R. Grone, Linear Algebra Appl. 150 (1991), 167-178.
  • O. Chan and T. K. Lam, Linear Algebra Appl. 273 (1998), 119-131.
  • O. Chan and B.-S. Ng, Linear Algebra Appl. 299 (1999), 175-190.
  • O. Chan and T. K. Lam, SIAM J. Matrix Anal. Appl. 21 (1999), 129-144.
  • G. G. Cash and I. Gutman, MATCH-Comm. Math. & Comput. Chem. 51 (2004), 129-136.