R. Merris, A note on Laplacian graph eigenvalues,
Linear Algebra Appl. 285 (1998), 33-35. Math Reviews
2000a:05143.
Let G be a graph. Denote by d(v) the degree of vertex v of G
and by m(v) the average of the degrees of the vertices of G
adjacent to v. The main result of this note is that the maximum,
over v, of d(v) + m(v) is an upper bound for the Laplacian spectral
radius of G.
Among the publications citing this article are:
J. S. Li and X. D. Zhang, Linear Algebra Appl. 285
(1998), 305-307.
J. J. Molitierno, M. Neumann, & B. L. Shader, Electronic
J. Linear Algebra 6 (2000), 62-71.
O. Rojo, R. Soto, & H. Rojo, Linear Algebra Appl. 312
(2000), 155-159.
O. Rojo, R. Soto, & H. Rojo, Computers & Math. Appl. 39
(2000), 1-15.
J.-S. Li and Y.-L. Pan, Linear & Multilinear Algebra
48 (2000), 117-121.
J.-S. Li and Y.-L. Pan, Linear Algebra Appl.
328 (2001), 153-160.
J. van den Heuvel & S. Pejic, Annals of Operations Research
107 (2001), 349-368.
J. L. Shu, Y. Hong, and K. Wen-Pen, Linear Algebra Appl. 347
(2002), 123-129.
X. D. Zhang and J. S. Li, Linear Algebra Appl. 353 (2002),
11-20.
Y.-L. Pan, Linear Algebra Appl. 355 (2002), 287-295.
R. B. Ellis, III, PhD Dissertation, UC San Diego, 2002.
[
.ps;
.pdf]
X.-D. Zhang and R. Luo, Linear Algebra Appl. 362 (2003)
109-119.
K. ch. Das, Linear Algebra Appl. 368 (2003), 269-278.
J.-M. Guo, Linear Algebra Appl. 368 (2003), 379-385.
Y. P. Hou, J. S. Li, and Y. L. Pan,
Linear & Multilinear Algebra 51 (2003), 21-30.
Huiqing Liu, Mei Lu, and Feng Tian, Linear Algebra Appl.
376 (2004), 135-141.
K. Ch. Das, Linear Algebra Appl. 376 (2004), 173-186.
Xiao-Dong Zheng, Linear Algebra Appl. 376 (2004), 207-213.
O. Rojo and H. Rojo, Linear Algebra Appl. 381 (2004),
97-116.
B. Zhou, Zeit. Naturforschung Sec. A-A 59 (2004),
181-184.
A. M. Yu, M. Lu, and F. Tian, Linear Algebra Appl.
387 (2004), 41-49.
J.-S. Li and Y.-L. Pan, Acta Math. Sinica-English series
20 (2004), 803-806.
Ji-Ming Guo, Linear Algebra Appl. 400 (2005), 61-66.