
AP 6.1 The current source in the circuit shown generates
the current pulse (for t>0)
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Find (a) v(0); (b) the instant of time, greater
than zero, when the voltage v passes through
zero; (c) the expression for the power delivered
to the inductor; (d) the instant when the power
delivered to the inductor is maximum; (e) the
maximum power; (f) the instant of time when
the stored energy is maximum; and (g) the maximum
energy stored in the inductor.
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b) Given tzv 1ms:= v tzv( ) 0= tzv Find tzv( ) 1.54 ms⋅=:=
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while t>0
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e) p tpmax( ) 32.719 W=
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AP 6.2 The voltage at the terminals of a 0.6 µF
capacitor  is 0 for t < 0 and
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Find 
(a) i(0);
(b) the power delivered to the capacitor at t = π/80 ms; 
(c) the energy stored in the capacitor at t = π/80 ms.
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AP 6.3 The current in a 0.6µF capacitor is 0 for t < 0 
and 3 cos 50,000t A for t > 0. C1 0.6μF:=
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A:= for t 0≥

Find (a) v(t)
(b) the maximum power delivered to the capacitor at any one instant of time; and
(c) the maximum energy stored in the capacitor at any one instant of time.
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AP 6.4 The initial values of i1 and i2 in the circuit
shown are + 3 A and - 5 A, respectively. The
voltage at the terminals of the parallel inductors
for t > 0 is 
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a) 60mH( ) || 240mH( ) 48 mH⋅=a) If the parallel inductors are replaced by a
single inductor, what is its inductance?
b) What is the initial current and its reference
direction in the equivalent inductor?
c) Use the equivalent inductor to find i(t).
d) Find i1(t) and i2(t). Verify that the solutions
for i1(t), i2(t), and i(t) satisfy Kirchhoff's
current law.
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AP 6.5 The current at the terminals of the two capacitors
shown is 
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The initial values of v1 and v2 are -10V and -5V,
respectively. Calculate the total energy trapped
in the capacitors as t -> ∞ (Hint: Don't combine
the capacitors in series—find the energy
trapped in each, and then add.)
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Note that the initial conditions for this problem are impractical as the two capacitors have unequal charges.





AP 6.6 a) Write a set of mesh-current equations for
the circuit in Example 6.6. If the dot on the
4H inductor is at the right-hand terminal,
the reference direction of ig, is reversed, and
the 60 Ω resistor is increased to 780 Ω.
b) Verify that if there is no energy stored in the
circuit at t = 0,and if
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the solutions to the differential equations
derived in (a) of this Assessment Problem are
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