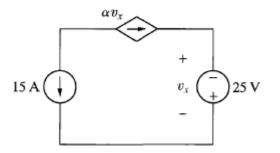
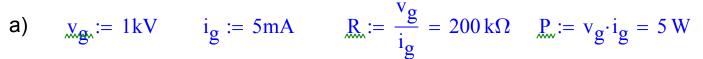

Mathcad Solutions to Assessment Problems from Nilsson and Riedel *Electric Circuits* 9th edition, © 2012 R. Doering. Chapter 2

- AP 2.1 For the circuit shown,
 - a) What value of v_g is required in order for the interconnection to be valid?
 - b) For this value of v_g , find the power associated with the 8 A source.

a)
$$i_b := -8A$$
 $v_g := \frac{i_b}{4S} = -2V$

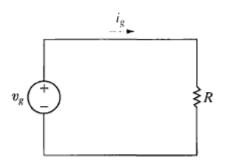

b) $P := -i_b \cdot v_g = -16 W$ power is delivered by the current source

- AP 2.2 For the circuit shown,
 - a) What value of α is required in order for the interconnection to be valid?
 - b) For the value of a calculated in part (a), find the power associated with the 25 V source.

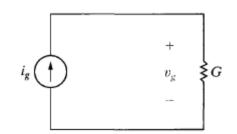

a)
$$v_x := -25V$$

$$\alpha \cdot v_{X} = -15 \text{A solve}, \alpha \rightarrow \frac{3 \cdot \text{A}}{5 \cdot \text{V}} = 0.6 \text{ S}$$

b) $\mathbf{P}_{\mathbf{W}} := -\mathbf{v}_{\mathbf{X}} \cdot 15\mathbf{A} = 375 \, \mathbf{W}$ absorbed.



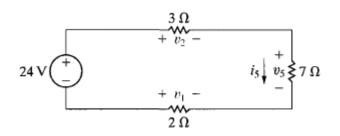
- AP 2.3 For the circuit shown,
 - a) If $v_g = 1 \text{ kV}$ and $i_g = 5 \text{ mA}$, find the value of R and the power absorbed by the resistor.
 - b) If $i_g = 75$ mA and the power delivered by the voltage source is 3 W, find v_g , R, and the power absorbed by the resistor.
 - c) If R = 300 Ω and the power absorbed by R is 480 mW, find i_g and v_g.



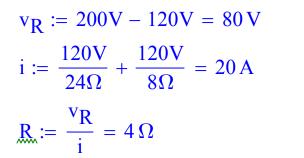
b)
$$i_{g_v} := 75 \text{mA}$$
 $P := 3W$ $v_{g_v} := \frac{P}{i_g} = 40V$ $R := \frac{V_g}{i_g} = 533.333 \Omega$ $P = 3W$

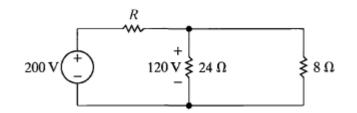
c)
$$R_{m} := 300\Omega$$
 $P_{m} := 480 \text{mW}$ $i_{g} := \sqrt{\frac{P}{R}} = 40 \text{ mA}$ $v_{g} := \frac{P}{i_g} = 12 \text{ V}$

- AP 2.4 For the circuit shown,
 - a) If $i_g = 0.5$ A and G = 50 mS, find v_g and the power delivered by the current source.
 - b) If $v_g = 15$ V and the power delivered to the conductor is 9 W, find the conductance G and the source current i_g .
 - c) If G = 200 μ S and the power delivered to the conductance is 8 W, find i_g and v_g.



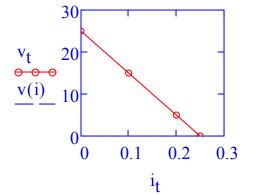
 $mS \equiv 10^{-3}S$ $\mu S \equiv 10^{-6}S$


a)
$$i_{ggv} := 0.5A$$
 $G_{m} := 50mS$ $y_{ggv} := \frac{^{1}g}{^{0}G} = 10V$ $P_{m} := i_{g} \cdot v_{g} = 5W$
b) $y_{ggv} := 15V$ $P_{m} := 9W$ $G_{m} := \frac{P}{v_{g}^{2}} = 40mS$ $i_{ggv} := \frac{P}{v_{g}} = 0.6A$
c) $G_{m} := 200\muS$ $P_{m} := 8W$ $i_{ggv} := \sqrt{P \cdot G} = 40mA$ $y_{ggv} := \frac{P}{i_{g}} = 200V$

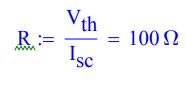

AP 2.5 For the circuit shown, calculate (a) i_5 ; (b) v_1 ; (c) v_2 ; (d) v_5 ; and (e) the power delivered by the 24 V source.

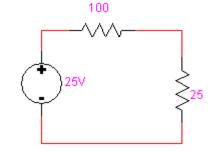
a)
$$i_5 := \frac{24V}{(3+7+2)\Omega} = 2 A$$

b) $v_1 := -i_5 \cdot 2\Omega = -4 V$
c) $v_2 := i_5 \cdot 3\Omega = 6 V$
d) $v_5 := i_5 \cdot 7\Omega = 14 V$
e) $P_{\text{mw}} := 24V \cdot i_5 = 48 W$



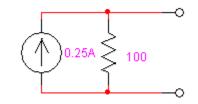
AP 2.6 Use Ohm's law and Kirchhoff s laws to find the value of R in the circuit shown.





- AP 2.7 a) The terminal voltage and terminal current were measured on the device shown. The values of v_t and i_t , are provided in the table. Using these values, create the straight line plot of v_t versus i_t . Compute the equation of the line and use the equation to construct a circuit model for the device using an ideal voltage source and a resistor.
 - b) Use the model constructed in (a) to predict the power that the device will deliver to a 25 Ω resistor.

 $I_{sc} := 0.25A$ $R_{sc} := \frac{V_{th}}{I_{sc}} = 100 \Omega$ a) $V_{th} := 25V$


b) $R_L := 25\Omega$ $V_L := \frac{25}{100 + 25} \cdot V_{th} = 5V$ $P_{tr} := \frac{V_L^2}{R_T} = 1W$

$$\mathbf{v}_{t} \coloneqq \begin{pmatrix} 25 \\ 15 \\ 5 \\ 0 \end{pmatrix} \qquad \mathbf{i}_{t} \coloneqq \begin{pmatrix} 0 \\ .1 \\ .2 \\ .25 \end{pmatrix}$$

$$\mathbf{v}(\mathbf{i}_{t}) \coloneqq \frac{-25V}{.25A} \cdot \mathbf{i}_{t} + 25V$$

$$\overrightarrow{\mathbf{v}(\mathbf{i}_{t})} = \begin{pmatrix} 25 \\ 15 \\ 5 \\ 0 \end{pmatrix} V$$

AP 2.8 Repeat Assessment Problem 2.7 but use the equation of the graphed line to construct a circuit model containing an ideal current source and a resistor.

