There are 5 data tables in the nycflights13 dataset.

Let put the 5 tables into an Excel spreadsheet containing the 5 data tables.

library(pacman)

p_load(openxlsx, nycflights13)
flights
airlines
airports
planes
weather
NA
# Create a blank workbook
OUT <- createWorkbook()

# Add some sheets to the workbook
addWorksheet(OUT, "flights")
addWorksheet(OUT, "airlines")
addWorksheet(OUT, "airports")
addWorksheet(OUT, "planes")
addWorksheet(OUT, "weather")

# Write the data to the sheets
writeData(OUT, sheet = "flights", x = flights)
writeData(OUT, sheet = "airlines", x = airlines)
writeData(OUT, sheet = "airports", x = airports)
writeData(OUT, sheet = "planes", x = planes)
writeData(OUT, sheet = "weather", x = weather)

# Export the file
saveWorkbook(OUT, "nycflights13_ver01.xlsx")

nycflights13_df_list <- c("flights", "airlines", "airports", "planes", "weather")

for(name in nycflights13_df_list){
  write.xlsx(x = get(name), 
             file = "nycflights13_ver02.xlsx", 
             sheetName = name)
}

Another way to write .xlsx files.

library(WriteXLS)
nycflights13_df_list <- c("flights", "airlines", "airports", "planes", "weather")
WriteXLS(nycflights13_df_list, "nycflights13_ver03.xlsx", names(nycflights13_df_list))
LS0tCnRpdGxlOiAiUHV0IHRoZSBueWNmbGlnaHRzIGRhdGEgaW50byBhbiBFeGNlbCBzcHJlYWRzaGVldCIKYXV0aG9yOiAiUHJvZi4gRXJpYyBBLiBTdWVzcyIKZGF0ZTogIkZlYnJ1YXJ5IDE3LCAyMDIzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpUaGVyZSBhcmUgNSBkYXRhIHRhYmxlcyBpbiB0aGUgbnljZmxpZ2h0czEzIGRhdGFzZXQuCgpMZXQgcHV0IHRoZSA1IHRhYmxlcyBpbnRvIGFuIEV4Y2VsIHNwcmVhZHNoZWV0IGNvbnRhaW5pbmcgdGhlIDUgZGF0YSB0YWJsZXMuCgpgYGB7cn0KbGlicmFyeShwYWNtYW4pCgpwX2xvYWQob3Blbnhsc3gsIG55Y2ZsaWdodHMxMykKYGBgCgpgYGB7cn0KZmxpZ2h0cwphaXJsaW5lcwphaXJwb3J0cwpwbGFuZXMKd2VhdGhlcgoKYGBgCgpgYGB7cn0KIyBDcmVhdGUgYSBibGFuayB3b3JrYm9vawpPVVQgPC0gY3JlYXRlV29ya2Jvb2soKQoKIyBBZGQgc29tZSBzaGVldHMgdG8gdGhlIHdvcmtib29rCmFkZFdvcmtzaGVldChPVVQsICJmbGlnaHRzIikKYWRkV29ya3NoZWV0KE9VVCwgImFpcmxpbmVzIikKYWRkV29ya3NoZWV0KE9VVCwgImFpcnBvcnRzIikKYWRkV29ya3NoZWV0KE9VVCwgInBsYW5lcyIpCmFkZFdvcmtzaGVldChPVVQsICJ3ZWF0aGVyIikKCiMgV3JpdGUgdGhlIGRhdGEgdG8gdGhlIHNoZWV0cwp3cml0ZURhdGEoT1VULCBzaGVldCA9ICJmbGlnaHRzIiwgeCA9IGZsaWdodHMpCndyaXRlRGF0YShPVVQsIHNoZWV0ID0gImFpcmxpbmVzIiwgeCA9IGFpcmxpbmVzKQp3cml0ZURhdGEoT1VULCBzaGVldCA9ICJhaXJwb3J0cyIsIHggPSBhaXJwb3J0cykKd3JpdGVEYXRhKE9VVCwgc2hlZXQgPSAicGxhbmVzIiwgeCA9IHBsYW5lcykKd3JpdGVEYXRhKE9VVCwgc2hlZXQgPSAid2VhdGhlciIsIHggPSB3ZWF0aGVyKQoKIyBFeHBvcnQgdGhlIGZpbGUKc2F2ZVdvcmtib29rKE9VVCwgIm55Y2ZsaWdodHMxM192ZXIwMS54bHN4IikKYGBgCgoKYGBge3J9CgpueWNmbGlnaHRzMTNfZGZfbGlzdCA8LSBjKCJmbGlnaHRzIiwgImFpcmxpbmVzIiwgImFpcnBvcnRzIiwgInBsYW5lcyIsICJ3ZWF0aGVyIikKCmZvcihuYW1lIGluIG55Y2ZsaWdodHMxM19kZl9saXN0KXsKICB3cml0ZS54bHN4KHggPSBnZXQobmFtZSksIAogICAgICAgICAgICAgZmlsZSA9ICJueWNmbGlnaHRzMTNfdmVyMDIueGxzeCIsIAogICAgICAgICAgICAgc2hlZXROYW1lID0gbmFtZSkKfQpgYGAKCkFub3RoZXIgd2F5IHRvIHdyaXRlIC54bHN4IGZpbGVzLgoKYGBge3J9CmxpYnJhcnkoV3JpdGVYTFMpCm55Y2ZsaWdodHMxM19kZl9saXN0IDwtIGMoImZsaWdodHMiLCAiYWlybGluZXMiLCAiYWlycG9ydHMiLCAicGxhbmVzIiwgIndlYXRoZXIiKQpXcml0ZVhMUyhueWNmbGlnaHRzMTNfZGZfbGlzdCwgIm55Y2ZsaWdodHMxM192ZXIwMy54bHN4IiwgbmFtZXMobnljZmxpZ2h0czEzX2RmX2xpc3QpKQpgYGAKCg==