ETC3550/ETC5550
 Applied forecasting

Ch9. ARIMA models
OTexts.org/fpp3/

Outline

1 Stationarity and differencing
2 Non-seasonal ARIMA models
3 Estimation and order selection
4 ARIMA modelling in R
5 Forecasting
6 Seasonal ARIMA models
7 ARIMA vs ETS

ARIMA models

AR: autoregressive (lagged observations as inputs)
I: integrated (differencing to make series stationary)
MA: moving average (lagged errors as inputs)

ARIMA models

AR: autoregressive (lagged observations as inputs)
I: integrated (differencing to make series stationary)
MA: moving average (lagged errors as inputs)
An ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But it can capture a huge range of time series patterns.

Outline

1 Stationarity and differencing
2 Non-seasonal ARIMA models
3 Estimation and order selection
4 ARIMA modelling in R
5 Forecasting
6 Seasonal ARIMA models
7 ARIMA vs ETS

Stationarity

Definition
 If $\left\{y_{t}\right\}$ is a stationary time series, then for all s, the distribution of $\left(y_{t}, \ldots, y_{t+s}\right)$ does not depend on t.

Stationarity

Definition
 If $\left\{y_{t}\right\}$ is a stationary time series, then for all s, the distribution of $\left(y_{t}, \ldots, y_{t+s}\right)$ does not depend on t.

A stationary series is:

- roughly horizontal
- constant variance
- no patterns predictable in the long-term

Stationary?

```
gafa_stock %>%
    filter(Symbol == "GOOG", year(Date) == 2018) %>%
    autoplot(Close) +
    labs(y = "Google closing stock price", x = "Day")
```


Stationary?

```
gafa_stock %>%
    filter(Symbol == "GOOG", year(Date) == 2018) %>%
    autoplot(difference(Close)) +
    labs(y = "Google closing stock price", x = "Day")
```


Stationary?

```
global_economy %>%
    filter(Country == "Algeria") %>%
    autoplot(Exports) +
    labs(y = "% of GDP", title = "Algerian Exports")
```

Algerian Exports

Stationary?

```
aus_production %>%
    autoplot(Bricks) +
    labs(title = "Clay brick production in Australia")
```

Clay brick production in Australia

Stationary?

```
prices %>%
    filter(year >= 1900) %>%
    autoplot(eggs) +
    labs(y="$US (1993)", title="Price of a dozen eggs")
```

Price of a dozen eggs

Stationary?

```
aus_livestock %>%
    filter(Animal == "Pigs", State == "Victoria") %>%
    autoplot(Count/1e3) +
    labs(y = "thousands", title = "Total pigs slaughtered in Victoria")
```

Total pigs slaughtered in Victoria

Stationary?

```
aus_livestock %>%
    filter(Animal == "Pigs", State == "Victoria", year(Month) >= 2010) %>%
    autoplot(Count/1e3) +
    labs(y = "thousands", title = "Total pigs slaughtered in Victoria")
```

Total pigs slaughtered in Victoria

Stationary?

```
aus_livestock %>%
    filter(Animal == "Pigs", State == "Victoria", year(Month) >= 2015) %>%
    autoplot(Count/1e3) +
    labs(y = "thousands", title = "Total pigs slaughtered in Victoria")
```

Total pigs slaughtered in Victoria

Stationary?

```
pelt %>%
    autoplot(Lynx) +
    labs(y = "Number trapped", title = "Annual Canadian Lynx Trappings")
```

Annual Canadian Lynx Trappings

Stationarity

Definition

If $\left\{y_{t}\right\}$ is a stationary time series, then for all s, the distribution of $\left(y_{t}, \ldots, y_{t+s}\right)$ does not depend on t.

Stationarity

Definition

If $\left\{y_{t}\right\}$ is a stationary time series, then for all s, the distribution of $\left(y_{t}, \ldots, y_{t+s}\right)$ does not depend on t.

Transformations help to stabilize the variance.
For ARIMA modelling, we also need to stabilize the mean.

Non-stationarity in the mean

Identifying non-stationary series

- time plot.

■ The ACF of stationary data drops to zero relatively quickly

- The ACF of non-stationary data decreases slowly.
\square For non-stationary data, the value of r_{1} is often large and positive.

Example: Google stock price

```
google_2018 <- gafa_stock %>%
    filter(Symbol == "GOOG", year(Date) == 2018)
```


Example: Google stock price

```
google_2018 %>%
    autoplot(Close) +
    labs(y = "Closing stock price ($USD)")
```


Example: Google stock price

google_2018 \%>\% ACF(Close) \%>\% autoplot()

Example: Google stock price

Example: Google stock price

```
google_2018 %>% ACF(difference(Close)) %>% autoplot()
```


Differencing

- Differencing helps to stabilize the mean.
- The differenced series is the change between each observation in the original series: $y_{t}^{\prime}=y_{t}-y_{t-1}$.
- The differenced series will have only $T-1$ values since it is not possible to calculate a difference y_{1}^{\prime} for the first observation.

Random walk model

If differenced series is white noise with zero mean:

$$
y_{t}-y_{t-1}=\varepsilon_{t} \quad \text { or } \quad y_{t}=y_{t-1}+\varepsilon_{t}
$$

where $\varepsilon_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$.
■ Very widely used for non-stationary data.
■ This is the model behind the naïve method.

- Random walks typically have:
- long periods of apparent trends up or down
- Sudden/unpredictable changes in direction
- Forecast are equal to the last observation
- future movements up or down are equally likely.

Random walk with drift model

If differenced series is white noise with non-zero mean:

$$
y_{t}-y_{t-1}=c+\varepsilon_{t} \quad \text { or } \quad y_{t}=c+y_{t-1}+\varepsilon_{t}
$$

where $\varepsilon_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$.
■ c is the average change between consecutive observations.

- If $c>0, y_{t}$ will tend to drift upwards and vice versa.

■ This is the model behind the drift method.

Second-order differencing

Occasionally the differenced data will not appear stationary and it may be necessary to difference the data a second time:

Second-order differencing

Occasionally the differenced data will not appear stationary and it may be necessary to difference the data a second time:

$$
\begin{aligned}
y_{t}^{\prime \prime} & =y_{t}^{\prime}-y_{t-1}^{\prime} \\
& =\left(y_{t}-y_{t-1}\right)-\left(y_{t-1}-y_{t-2}\right) \\
& =y_{t}-2 y_{t-1}+y_{t-2} .
\end{aligned}
$$

Second-order differencing

Occasionally the differenced data will not appear stationary and it may be necessary to difference the data a second time:

$$
\begin{aligned}
y_{t}^{\prime \prime} & =y_{t}^{\prime}-y_{t-1}^{\prime} \\
& =\left(y_{t}-y_{t-1}\right)-\left(y_{t-1}-y_{t-2}\right) \\
& =y_{t}-2 y_{t-1}+y_{t-2} .
\end{aligned}
$$

- $y_{t}^{\prime \prime}$ will have $T-2$ values.

■ In practice, it is almost never necessary to go beyond second-order differences.

Seasonal differencing

A seasonal difference is the difference between an observation and the corresponding observation from the previous year.

Seasonal differencing

A seasonal difference is the difference between an observation and the corresponding observation from the previous year.

$$
y_{t}^{\prime}=y_{t}-y_{t-m}
$$

where $m=$ number of seasons.

Seasonal differencing

A seasonal difference is the difference between an observation and the corresponding observation from the previous year.

$$
y_{t}^{\prime}=y_{t}-y_{t-m}
$$

where $m=$ number of seasons.

- For monthly data $m=12$.

■ For quarterly data $m=4$.

Antidiabetic drug sales

```
a10 <- PBS %>%
    filter(ATC2 == "A10") %>%
    summarise(Cost = sum(Cost)/1e6)
```


Antidiabetic drug sales

```
a10 %>% autoplot(
    Cost
)
```


Antidiabetic drug sales

```
a10 %>% autoplot(
    log(Cost)
)
```


Antidiabetic drug sales

```
a10 %>% autoplot(
    log(Cost) %>% difference(12)
)
```


Cortecosteroid drug sales

```
h02 <- PBS %>%
    filter(ATC2 == "H02") %>%
    summarise(Cost = sum(Cost)/1e6)
```


Cortecosteroid drug sales

```
h02 %>% autoplot(
    Cost
)
```


Cortecosteroid drug sales

```
h02 %>% autoplot(
    log(Cost)
)
```


Cortecosteroid drug sales

```
h02 %>% autoplot(
    log(Cost) %>% difference(12)
)
```


Cortecosteroid drug sales

```
h02 %>% autoplot(
    log(Cost) %>% difference(12) %>% difference(1)
)
```


Cortecosteroid drug sales

- Seasonally differenced series is closer to being stationary.
- Remaining non-stationarity can be removed with further first difference.
If $y_{t}^{\prime}=y_{t}-y_{t-12}$ denotes seasonally differenced series, then twice-differenced series is

$$
\begin{aligned}
y_{t}^{*} & =y_{t}^{\prime}-y_{t-1}^{\prime} \\
& =\left(y_{t}-y_{t-12}\right)-\left(y_{t-1}-y_{t-13}\right) \\
& =y_{t}-y_{t-1}-y_{t-12}+y_{t-13} .
\end{aligned}
$$

Seasonal differencing

When both seasonal and first differences are applied...

Seasonal differencing

When both seasonal and first differences are applied...
■ it makes no difference which is done first-the result will be the same.
■ If seasonality is strong, we recommend that seasonal differencing be done first because sometimes the resulting series will be stationary and there will be no need for further first difference.

Seasonal differencing

When both seasonal and first differences are applied...
■ it makes no difference which is done first-the result will be the same.
■ If seasonality is strong, we recommend that seasonal differencing be done first because sometimes the resulting series will be stationary and there will be no need for further first difference.

It is important that if differencing is used, the differences are interpretable.

Interpretation of differencing

- first differences are the change between one observation and the next;
- seasonal differences are the change between one year to the next.

Interpretation of differencing

■ first differences are the change between one observation and the next;

- seasonal differences are the change between one year to the next.

But taking lag 3 differences for yearly data, for example, results in a model which cannot be sensibly interpreted.

Unit root tests

Statistical tests to determine the required order of differencing.

1 Augmented Dickey Fuller test: null hypothesis is that the data are non-stationary and non-seasonal.
2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are stationary and non-seasonal.
3 Other tests available for seasonal data.

KPSS test

```
google_2018 %>%
    features(Close, unitroot_kpss)
## # A tibble: 1 x 3
## Symbol kpss_stat kpss_pvalue
## <chr> <dbl> <dbl>
## 1 GOOG 0.573 0.0252
```


KPSS test

```
google_2018 %>%
    features(Close, unitroot_kpss)
```

\#\# \# A tibble: 1×3
\#\# Symbol kpss_stat kpss_pvalue
\#\# <chr> <dbl> <dbl>
\#\# 1 GOOG 0.573 0.0252

```
google_2018 %>%
    features(Close, unitroot_ndiffs)
```

\#\# \# A tibble: 1 x 2
\#\# Symbol ndiffs
\#\# <chr> <int>
\#\# 1 GOOG 1

Automatically selecting differences

STL decomposition: $y_{t}=T_{t}+S_{t}+R_{t}$

Seasonal strength $F_{s}=\max \left(0,1-\frac{\operatorname{Var}\left(R_{t}\right)}{\operatorname{Var}\left(S_{t}+R_{t}\right)}\right)$
If $F_{s}>0.64$, do one seasonal difference.

```
h02 %>% mutate(log_sales = log(Cost)) %>%
    features(log_sales, list(unitroot_nsdiffs, feat_stl))
```

\#\# \# A tibble: 1×10
\#\# nsdiffs trend_strength seasonal_streng~ seasonal_peak_y~ seasonal_trough~
\#\# <int> <dbl> <dbl> <dbl> <dbl>
$\begin{array}{llllll}\# \# & 1 & 0.957 & 0.955 & 6\end{array}$
\#\# \# ... with 5 more variables: spikiness <dbl>, linearity <dbl>,
\#\# \# curvature <dbl>, stl_e_acf1 <dbl>, stl_e_acf10<dbl>

Automatically selecting differences

```
h02 %>% mutate(log_sales = log(Cost)) %>%
    features(log_sales, unitroot_nsdiffs)
## # A tibble: 1 x 1
## nsdiffs
## <int>
## 1 1
h02 %>% mutate(d_log_sales = difference(log(Cost), 12)) %>%
    features(d_log_sales, unitroot_ndiffs)
```

\#\# \# A tibble: 1×1
\#\# ndiffs
\#\# <int>
\#\# 1 1

Backshift notation

A very useful notational device is the backward shift operator, B, which is used as follows:

$$
B y_{t}=y_{t-1}
$$

Backshift notation

A very useful notational device is the backward shift operator, B, which is used as follows:

$$
B y_{t}=y_{t-1}
$$

In other words, B, operating on y_{t}, has the effect of shifting the data back one period.

Backshift notation

A very useful notational device is the backward shift operator, B, which is used as follows:

$$
B y_{t}=y_{t-1}
$$

In other words, B, operating on y_{t}, has the effect of shifting the data back one period.

Two applications of B to y_{t} shifts the data back two periods:

$$
B\left(B y_{t}\right)=B^{2} y_{t}=y_{t-2}
$$

Backshift notation

A very useful notational device is the backward shift operator, B, which is used as follows:

$$
B y_{t}=y_{t-1}
$$

In other words, B, operating on y_{t}, has the effect of shifting the data back one period.

Two applications of B to y_{t} shifts the data back two periods:

$$
B\left(B y_{t}\right)=B^{2} y_{t}=y_{t-2}
$$

For monthly data, if we wish to shift attention to "the same month last year", then B^{12} is used, and the notation is $B^{12} y_{t}=y_{t-12}$.

Backshift notation

The backward shift operator is convenient for describing the process of differencing.

Backshift notation

The backward shift operator is convenient for describing the process of differencing.

A first-order difference can be written as

$$
y_{t}^{\prime}=y_{t}-y_{t-1}=y_{t}-B y_{t}=(1-B) y_{t}
$$

Backshift notation

The backward shift operator is convenient for describing the process of differencing.

A first-order difference can be written as

$$
y_{t}^{\prime}=y_{t}-y_{t-1}=y_{t}-B y_{t}=(1-B) y_{t}
$$

Similarly, if second-order differences (i.e., first differences of first differences) have to be computed, then:

$$
y_{t}^{\prime \prime}=y_{t}-2 y_{t-1}+y_{t-2}=(1-B)^{2} y_{t}
$$

Backshift notation

- Second-order difference is denoted $(1-B)^{2}$.
- Second-order difference is not the same as a second difference, which would be denoted $1-B^{2}$;
■ In general, a dth-order difference can be written as

$$
(1-B)^{d} y_{t}
$$

■ A seasonal difference followed by a first difference can be written as

$$
(1-B)\left(1-B^{m}\right) y_{t}
$$

Backshift notation

The "backshift" notation is convenient because the terms can be multiplied together to see the combined effect.

$$
\begin{aligned}
(1-B)\left(1-B^{m}\right) y_{t} & =\left(1-B-B^{m}+B^{m+1}\right) y_{t} \\
& =y_{t}-y_{t-1}-y_{t-m}+y_{t-m-1}
\end{aligned}
$$

Backshift notation

The "backshift" notation is convenient because the terms can be multiplied together to see the combined effect.

$$
\begin{aligned}
(1-B)\left(1-B^{m}\right) y_{t} & =\left(1-B-B^{m}+B^{m+1}\right) y_{t} \\
& =y_{t}-y_{t-1}-y_{t-m}+y_{t-m-1}
\end{aligned}
$$

For monthly data, $m=12$ and we obtain the same result as earlier.

Outline

1 Stationarity and differencing
2 Non-seasonal ARIMA models
3 Estimation and order selection
4 ARIMA modelling in R
5 Forecasting
6 Seasonal ARIMA models
7 ARIMA vs ETS

Autoregressive models

Autoregressive (AR) models:

$$
y_{t}=c+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\cdots+\phi_{p} y_{t-p}+\varepsilon_{t}
$$

where ε_{t} is white noise. This is a multiple regression with lagged values of y_{t} as predictors.

AR(1) model

$$
y_{t}=18-0.8 y_{t-1}+\varepsilon_{t}
$$

$$
\varepsilon_{\mathrm{t}} \sim N(0,1), \quad T=100
$$

AR(1)

AR(1) model

$$
y_{t}=c+\phi_{1} y_{t-1}+\varepsilon_{t}
$$

- When $\phi_{1}=0, y_{t}$ is equivalent to $\mathbf{W N}$
- When $\phi_{1}=1$ and $c=0, y_{t}$ is equivalent to a RW
- When $\phi_{1}=1$ and $c \neq 0, y_{t}$ is equivalent to a RW with drift
\square When $\phi_{1}<0, y_{t}$ tends to oscillate between positive and negative values.

AR(2) model

$$
y_{t}=8+1.3 y_{t-1}-0.7 y_{t-2}+\varepsilon_{t}
$$

$$
\varepsilon_{\mathrm{t}} \sim N(0,1), \quad T=100
$$

AR(2)

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1-\phi_{1} z-\phi_{2} z^{2}-\cdots-\phi_{p} z^{p}$ lie outside the unit circle on the complex plane.

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1-\phi_{1} z-\phi_{2} z^{2}-\cdots-\phi_{p} z^{p}$ lie outside the unit circle on the complex plane.

- For $p=1:-1<\phi_{1}<1$.
- For $p=2$:

$$
-1<\phi_{2}<1 \quad \phi_{2}+\phi_{1}<1 \quad \phi_{2}-\phi_{1}<1 .
$$

■ More complicated conditions hold for $p \geq 3$.
Estimation software takes care of this.

Moving Average (MA) models

Moving Average (MA) models:

$$
y_{t}=c+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\cdots+\theta_{q} \varepsilon_{t-q}
$$

where ε_{t} is white noise. This is a multiple regression with past errors as predictors. Don't confuse this with moving average smoothing!

MA(1) model

$$
y_{t}=20+\varepsilon_{t}+0.8 \varepsilon_{t-1}
$$

$$
\varepsilon_{\mathrm{t}} \sim N(0,1), \quad T=100
$$

MA(1)

MA(2) model

$$
y_{t}=\varepsilon_{t}-\varepsilon_{t-1}+0.8 \varepsilon_{t-2}
$$

$$
\varepsilon_{t} \sim N(0,1), \quad T=100
$$

MA(2)

MA (∞) models

It is possible to write any stationary $\operatorname{AR}(p)$ process as an $\mathrm{MA}(\infty)$ process. Example: AR(1)

$$
\begin{aligned}
y_{t} & =\phi_{1} y_{t-1}+\varepsilon_{t} \\
& =\phi_{1}\left(\phi_{1} y_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
& =\phi_{1}^{2} y_{t-2}+\phi_{1} \varepsilon_{t-1}+\varepsilon_{t} \\
& =\phi_{1}^{3} y_{t-3}+\phi_{1}^{2} \varepsilon_{t-2}+\phi_{1} \varepsilon_{t-1}+\varepsilon_{t}
\end{aligned}
$$

MA (∞) models

It is possible to write any stationary $\operatorname{AR}(p)$ process as an $\mathrm{MA}(\infty)$ process. Example: AR(1)

$$
\begin{aligned}
y_{t} & =\phi_{1} y_{t-1}+\varepsilon_{t} \\
& =\phi_{1}\left(\phi_{1} y_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
& =\phi_{1}^{2} y_{t-2}+\phi_{1} \varepsilon_{t-1}+\varepsilon_{t} \\
& =\phi_{1}^{3} y_{t-3}+\phi_{1}^{2} \varepsilon_{t-2}+\phi_{1} \varepsilon_{t-1}+\varepsilon_{t}
\end{aligned}
$$

Provided $-1<\phi_{1}<1$:

$$
y_{t}=\varepsilon_{t}+\phi_{1} \varepsilon_{t-1}+\phi_{1}^{2} \varepsilon_{t-2}+\phi_{1}^{3} \varepsilon_{t-3}+\cdots
$$

Invertibility

■ Any MA(q) process can be written as an $\mathrm{AR}(\infty)$ process if we impose some constraints on the MA parameters.
■ Then the MA model is called "invertible".
■ Invertible models have some mathematical properties that make them easier to use in practice.

- Invertibility of an ARIMA model is equivalent to forecastability of an ETS model.

Invertibility

General condition for invertibility

Complex roots of $1+\theta_{1} z+\theta_{2} z^{2}+\cdots+\theta_{q} z^{q}$ lie outside the unit circle on the complex plane.

Invertibility

General condition for invertibility

Complex roots of $1+\theta_{1} z+\theta_{2} z^{2}+\cdots+\theta_{q} z^{q}$ lie outside the unit circle on the complex plane.

- For $q=1$: $-1<\theta_{1}<1$.
- For $q=2$:
$-1<\theta_{2}<1 \quad \theta_{2}+\theta_{1}>-1 \quad \theta_{1}-\theta_{2}<1$.
\square More complicated conditions hold for $q \geq 3$.
- Estimation software takes care of this.

ARIMA models

Autoregressive Moving Average models:

$$
\begin{aligned}
y_{t}=c+\phi_{1} y_{t-1} & +\cdots+\phi_{p} y_{t-p} \\
& +\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{q} \varepsilon_{t-q}+\varepsilon_{t}
\end{aligned}
$$

ARIMA models

Autoregressive Moving Average models:

$$
\begin{aligned}
y_{t}=c+\phi_{1} y_{t-1} & +\cdots+\phi_{p} y_{t-p} \\
& +\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{q} \varepsilon_{t-q}+\varepsilon_{t}
\end{aligned}
$$

\square Predictors include both lagged values of y_{t} and lagged errors.

- Conditions on AR coefficients ensure stationarity.

■ Conditions on MA coefficients ensure invertibility.

ARIMA models

Autoregressive Moving Average models:

$$
\begin{aligned}
y_{t}=c+\phi_{1} y_{t-1} & +\cdots+\phi_{p} y_{t-p} \\
& +\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{q} \varepsilon_{t-q}+\varepsilon_{t}
\end{aligned}
$$

■ Predictors include both lagged values of y_{t} and lagged errors.

- Conditions on AR coefficients ensure stationarity.
- Conditions on MA coefficients ensure invertibility.

Autoregressive Integrated Moving Average models

- Combine ARMA model with differencing.
$\square(1-B)^{d} y_{t}$ follows an ARMA model.

ARIMA models

Autoregressive Integrated Moving Average models

ARIMA(p, d, q) model

AR: $\quad p=$ order of the autoregressive part
I: $\quad d=$ degree of first differencing involved
MA: $\quad q=$ order of the moving average part.
■ White noise model: ARIMA($0,0,0$)

- Random walk: ARIMA($0,1,0$) with no constant

■ Random walk with drift: ARIMA($0,1,0$) with const.

- $\operatorname{AR}(p): \operatorname{ARIMA}(p, 0,0)$

■ MA(q): ARIMA $(0,0, q)$

Backshift notation for ARIMA

- ARMA model:

$$
\begin{gathered}
\quad y_{t}=c+\phi_{1} B y_{t}+\cdots+\phi_{p} B^{p} y_{t}+\varepsilon_{t}+\theta_{1} B \varepsilon_{t}+\cdots+\theta_{q} B^{q} \varepsilon_{t} \\
\text { or } \quad\left(1-\phi_{1} B-\cdots-\phi_{p} B^{p}\right) y_{t}=c+\left(1+\theta_{1} B+\cdots+\theta_{q} B^{q}\right) \varepsilon_{t}
\end{gathered}
$$

- ARIMA(1,1,1) model:

$$
\begin{array}{ccc}
\left(1-\phi_{1} B\right) & (1-B) y_{t} & c+\left(1+\theta_{1} B\right) \varepsilon_{t} \\
\uparrow & \uparrow & \uparrow \\
\operatorname{AR}(1) & \text { First } & \operatorname{MA}(1) \\
& \text { difference } &
\end{array}
$$

Backshift notation for ARIMA

■ ARMA model:

$$
\begin{gathered}
y_{t}=c+\phi_{1} B y_{t}+\cdots+\phi_{p} B^{p} y_{t}+\varepsilon_{t}+\theta_{1} B \varepsilon_{t}+\cdots+\theta_{q} B^{q} \varepsilon_{t} \\
\text { or } \quad\left(1-\phi_{1} B-\cdots-\phi_{p} B^{p}\right) y_{t}=c+\left(1+\theta_{1} B+\cdots+\theta_{q} B^{q}\right) \varepsilon_{t}
\end{gathered}
$$

- ARIMA(1,1,1) model:

$$
\begin{array}{ccc}
\left(1-\phi_{1} B\right) & (1-B) y_{t} & c+\left(1+\theta_{1} B\right) \varepsilon_{t} \\
\uparrow & \uparrow & \uparrow \\
\operatorname{AR}(1) & \text { First } & \operatorname{MA}(1) \\
& \text { difference } &
\end{array}
$$

Expand: $\quad y_{t}=c+y_{t-1}+\phi_{1} y_{t-1}-\phi_{1} y_{t-2}+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}$

R model

Intercept form

$$
\left(1-\phi_{1} B-\cdots-\phi_{p} B^{p}\right) y_{t}^{\prime}=c+\left(1+\theta_{1} B+\cdots+\theta_{q} B^{q}\right) \varepsilon_{t}
$$

Mean form

$$
\left(1-\phi_{1} B-\cdots-\phi_{p} B^{p}\right)\left(y_{t}^{\prime}-\mu\right)=\left(1+\theta_{1} B+\cdots+\theta_{q} B^{q}\right) \varepsilon_{t}
$$

- $y_{t}^{\prime}=(1-B)^{d} y_{t}$
- μ is the mean of y_{t}^{\prime}.

■ $c=\mu\left(1-\phi_{1}-\cdots-\phi_{p}\right)$.
■ fable uses intercept form

Egyptian exports

```
global_economy %>%
    filter(Code == "EGY") %>%
    autoplot(Exports) +
    labs(y = "% of GDP", title = "Egyptian Exports")
```

Egyptian Exports

Egyptian exports

```
fit <- global_economy %>% filter(Code == "EGY") %>%
    model(ARIMA(Exports))
report(fit)
## Series: Exports
## Model: ARIMA(2,0,1) w/ mean
##
## Coefficients:
\begin{tabular}{lrrrr} 
\#\# & ar1 & ar2 & mal & constant \\
\#\# & 1.676 & -0.8034 & -0.690 & 2.562 \\
\#\# s.e. & 0.111 & 0.0928 & 0.149 & 0.116
\end{tabular}
##
## sigma^2 estimated as 8.046: log likelihood=-142
## AIC=293 AICc=294 BIC=303
```


Egyptian exports

```
fit <- global_economy %>% filter(Code == "EGY") %>%
    model(ARIMA(Exports))
report(fit)
```

\#\# Series: Exports
\#\# Model: ARIMA(2,0,1) w/ mean
\#\#
\#\# Coefficients:

\#\#	ar1	ar2	ma1	constant
\#\#	1.676	-0.8034	-0.690	2.562
\#\# s.e.	0.111	0.0928	0.149	0.116

\#\#
\#\# sigma^2 estimated as 8.046: log likelihood=-142

ARIMA(2,0,1) model:

$$
y_{t}=2.56+1.68 y_{t-1}-0.80 y_{t-2}-0.69 \varepsilon_{t-1}+\varepsilon_{t},
$$

where ε_{t} is white noise with a standard deviation of $2.837=\sqrt{8.046}$.

Egyptian exports

gg_tsresiduals(fit)

Egyptian exports

```
augment(fit) %>%
    features(.innov, ljung_box, lag = 10, dof = 4)
```

\#\# \# A tibble: 1×4
\#\# Country .model lb_stat lb_pvalue
\#\# <fct> <chr> <dbl> <dbl>
\#\# 1 Egypt, Arab Rep. ARIMA(Exports) 5.780 .448

Egyptian exports

```
fit %>% forecast(h=10) %>%
    autoplot(global_economy) +
    labs(y = "% of GDP", title = "Egyptian Exports")
```


Egyptian Exports

Understanding ARIMA models

■ If $c=0$ and $d=0$, the long-term forecasts will go to zero.

- If $c=0$ and $d=1$, the long-term forecasts will go to a non-zero constant.
- If $c=0$ and $d=2$, the long-term forecasts will follow a straight line.
■ If $c \neq 0$ and $d=0$, the long-term forecasts will go to the mean of the data.
- If $c \neq 0$ and $d=1$, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and $d=2$, the long-term forecasts will follow a quadratic trend.

Understanding ARIMA models

Forecast variance and d

\square The higher the value of d, the more rapidly the prediction intervals increase in size.

- For $d=0$, the long-term forecast standard deviation will go to the standard deviation of the historical data.

Cyclic behaviour

- For cyclic forecasts, $p \geq 2$ and some restrictions on coefficients are required.
\square If $p=2$, we need $\phi_{1}^{2}+4 \phi_{2}<0$. Then average cycle of length

$$
(2 \pi) /\left[\arccos \left(-\phi_{1}\left(1-\phi_{2}\right) /\left(4 \phi_{2}\right)\right)\right] .
$$

Outline

1 Stationarity and differencing
2 Non-seasonal ARIMA models
3 Estimation and order selection
4 ARIMA modelling in R
5 Forecasting
6 Seasonal ARIMA models
7 ARIMA vs ETS

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters $c, \phi_{1}, \ldots, \phi_{p}, \theta_{1}, \ldots, \theta_{q}$.

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters $c, \phi_{1}, \ldots, \phi_{p}, \theta_{1}, \ldots, \theta_{q}$.

- MLE is very similar to least squares estimation obtained by minimizing

$$
\sum_{t-1}^{T} e_{t}^{2}
$$

■ The ARIMA () function allows CLS or MLE estimation.
■ Non-linear optimization must be used in either case.
■ Different software will give different estimates.

Partial autocorrelations

Partial autocorrelations measure relationship between y_{t} and y_{t-k}, when the effects of other time lags $-1,2,3, \ldots, k-1$ - are removed.

Partial autocorrelations

Partial autocorrelations measure relationship between y_{t} and y_{t-k}, when the effects of other time lags $-1,2,3, \ldots, k-1$ - are removed.

$$
\begin{aligned}
& \alpha_{k}=k \text { th partial autocorrelation coefficient } \\
& =\text { equal to the estimate of } \phi_{\mathrm{k}} \text { in regression: } \\
& \qquad y_{t}=c+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\cdots+\phi_{k} y_{t-k}+\varepsilon_{t} .
\end{aligned}
$$

Partial autocorrelations

Partial autocorrelations measure relationship between y_{t} and y_{t-k}, when the effects of other time lags $-1,2,3, \ldots, k-1$ - are removed.

$$
\begin{aligned}
& \alpha_{\mathrm{k}}=k \text { th partial autocorrelation coefficient } \\
& =\text { equal to the estimate of } \phi_{\mathrm{k}} \text { in regression: } \\
& \qquad y_{t}=c+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\cdots+\phi_{k} y_{t-k}+\varepsilon_{t} .
\end{aligned}
$$

■ Varying number of terms on RHS gives α_{k} for different values of k.

- $\alpha_{1}=\rho_{1}$
- same critical values of $\pm 1.96 / \sqrt{T}$ as for ACF.
- Last significant α_{k} indicates the order of an AR model.

Egyptian exports

```
egypt <- global_economy %>% filter(Code == "EGY")
egypt %>% ACF(Exports) %>% autoplot()
egypt %>% PACF(Exports) %>% autoplot()
```


Egyptian exports

```
global_economy %>% filter(Code == "EGY") %>%
    gg_tsdisplay(Exports, plot_type='partial')
```


ACF and PACF interpretation

AR(1)

$$
\begin{array}{ll}
\rho_{k}=\phi_{1}^{k} & \text { for } k=1,2, \ldots ; \\
\alpha_{1}=\phi_{1} & \alpha_{k}=0 \quad \text { for } k=2,3, \ldots
\end{array}
$$

So we have an $\operatorname{AR}(1)$ model when

- autocorrelations exponentially decay
- there is a single significant partial autocorrelation.

ACF and PACF interpretation

AR(p)
■ ACF dies out in an exponential or damped sine-wave manner
■ PACF has all zero spikes beyond the pth spike
So we have an $\operatorname{AR}(p)$ model when

- the ACF is exponentially decaying or sinusoidal

■ there is a significant spike at lag p in PACF, but none beyond p

ACF and PACF interpretation

MA(1)

$$
\begin{aligned}
& \rho_{1}=\theta_{1} /\left(1+\theta_{1}^{2}\right) \quad \rho_{k}=0 \quad \text { for } k=2,3, \ldots ; \\
& \alpha_{k}=-\left(-\theta_{1}\right)^{k} /\left(1+\theta_{1}^{2}+\cdots+\theta_{1}^{2 k}\right)
\end{aligned}
$$

So we have an MA(1) model when

- the PACF is exponentially decaying and
\square there is a single significant spike in ACF

ACF and PACF interpretation

MA(q)
■ PACF dies out in an exponential or damped sine-wave manner
■ ACF has all zero spikes beyond the qth spike
So we have an MA(q) model when

- the PACF is exponentially decaying or sinusoidal
\square there is a significant spike at lag q in ACF, but none beyond q

Information criteria

Akaike's Information Criterion (AIC):

$$
\text { AIC }=-2 \log (L)+2(p+q+k+1)
$$

where L is the likelihood of the data, $k=1$ if $c \neq 0$ and $k=0$ if $c=0$.

Information criteria

Akaike's Information Criterion (AIC):

$$
\text { AIC }=-2 \log (L)+2(p+q+k+1)
$$

where L is the likelihood of the data, $k=1$ if $c \neq 0$ and $k=0$ if $c=0$.
Corrected AIC:

$$
\mathrm{AICC}=\mathrm{AIC}+\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}
$$

Information criteria

Akaike's Information Criterion (AIC):

$$
\operatorname{AIC}=-2 \log (L)+2(p+q+k+1)
$$

where L is the likelihood of the data, $k=1$ if $c \neq 0$ and $k=0$ if $c=0$.
Corrected AIC:

$$
\mathrm{AICC}=\mathrm{AIC}+\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}
$$

Bayesian Information Criterion:

$$
\mathrm{BIC}=\operatorname{AIC}+[\log (T)-2](p+q+k+1)
$$

Information criteria

Akaike's Information Criterion (AIC):

$$
\text { AIC }=-2 \log (L)+2(p+q+k+1)
$$

where L is the likelihood of the data, $k=1$ if $c \neq 0$ and $k=0$ if $c=0$.
Corrected AIC:

$$
\mathrm{AICC}=\mathrm{AIC}+\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}
$$

Bayesian Information Criterion:

$$
\mathrm{BIC}=\mathrm{AIC}+[\log (T)-2](p+q+k+1)
$$

Good models are obtained by minimizing either the AIC, AICc or BIC. Our preference is to use the AICc.

Outline

1 Stationarity and differencing
2 Non-seasonal ARIMA models
3 Estimation and order selection
4 ARIMA modelling in R
5 Forecasting
6 Seasonal ARIMA models
7 ARIMA vs ETS

How does ARIMA() work?

A non-seasonal ARIMA process

$$
\phi(B)(1-B)^{d} y_{t}=c+\theta(B) \varepsilon_{t}
$$

Need to select appropriate orders: p, q, d

Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences d and D via KPSS test and seasonal strength measure.
- Select p, q by minimising AICc.

■ Use stepwise search to traverse model space.

How does ARIMA() work?

$$
\text { AICc }=-2 \log (L)+2(p+q+k+1)\left[1+\frac{(p+q+k+2)}{T-p-q-k-2}\right]
$$

where L is the maximised likelihood fitted to the differenced data, $k=1$ if $c \neq 0$ and $k=0$ otherwise.

How does ARIMA() work?

$$
\text { AICc }=-2 \log (L)+2(p+q+k+1)\left[1+\frac{(p+q+k+2)}{T-p-q-k-2}\right]
$$

where L is the maximised likelihood fitted to the differenced data, $k=1$ if $c \neq 0$ and $k=0$ otherwise.

Step1: Select current model (with smallest AICc) from: $\operatorname{ARIMA}(2, d, 2), \quad \operatorname{ARIMA}(0, d, 0), \quad \operatorname{ARIMA}(1, d, 0), \quad \operatorname{ARIMA}(0, d, 1)$

How does ARIMA() work?

$$
\text { AICc }=-2 \log (L)+2(p+q+k+1)\left[1+\frac{(p+q+k+2)}{T-p-q-k-2}\right]
$$

where L is the maximised likelihood fitted to the differenced data, $k=1$ if $c \neq 0$ and $k=0$ otherwise.

Step1: Select current model (with smallest AICc) from:
$\operatorname{ARIMA}(2, d, 2), \quad \operatorname{ARIMA}(0, d, 0), \quad \operatorname{ARIMA}(1, d, 0), \quad \operatorname{ARIMA}(0, d, 1)$
Step 2: Consider variations of current model:

- vary one of p, q, from current model by ± 1;
- p, q both vary from current model by ± 1;
- Include/exclude c from current model.

Model with lowest AICc becomes current model.
Repeat Step 2 until no lower AICc can be found.

How does ARIMA() work?

Egyptian exports

```
global_economy %>% filter(Code == "EGY") %>%
    gg_tsdisplay(Exports, plot_type='partial')
```


Egyptian exports

```
fit1 <- global_economy %>%
    filter(Code == "EGY") %>%
    model(ARIMA(Exports ~ pdq(4,0,0)))
report(fit1)
```

\#\# Series: Exports
\#\# Model: ARIMA(4,0,0) w/ mean
\#\#
\#\# Coefficients:

\#\#	ar1	ar2	ar3	ar4	constant
\#\#	0.986	-0.172	0.181	-0.328	6.692
\#\# s.e.	0.125	0.186	0.186	0.127	0.356

\#\#
\#\# sigma^2 estimated as 7.885: log likelihood=-141
\#\# AIC=293 AICC=295 BIC=305

Egyptian exports

```
fit2 <- global_economy %>%
    filter(Code == "EGY") %>%
    model(ARIMA(Exports))
report(fit2)
```

\#\# Series: Exports
\#\# Model: ARIMA(2,0,1) w/ mean
\#\#
\#\# Coefficients:

\#\#	ar1	ar2	ma1	constant
\#\#	1.676	-0.8034	-0.690	2.562
\#\# s.e.	0.111	0.0928	0.149	0.116

\#\#
\#\# sigma^2 estimated as 8.046: log likelihood=-142
\#\# AIC=293 AICC=294 BIC=303

Central African Republic exports

```
global_economy %>%
    filter(Code == "CAF") %>%
    autoplot(Exports) +
    labs(title="Central African Republic exports", y="% of GDP")
```

Central African Republic exports

Central African Republic exports

```
global_economy %>%
    filter(Code == "CAF") %>%
    gg_tsdisplay(difference(Exports), plot_type='partial')
```


Central African Republic exports

```
caf_fit <- global_economy %>%
    filter(Code == "CAF") %>%
    model(arima210 = ARIMA(Exports ~ pdq(2,1,0)),
    arima013 = ARIMA(Exports ~ pdq(0,1,3)),
    stepwise = ARIMA(Exports),
    search = ARIMA(Exports, stepwise=FALSE))
```


Central African Republic exports

```
caf_fit %>% pivot_longer(!Country, names_to = "Model name",
    values_to = "Orders")
```

```
## # A mable: 4 x 3
## # Key: Country, Model name [4]
## Country `Model name` Orders
## <fct> <chr> <model>
## 1 Central African Republic arima210 <ARIMA(2,1,0)>
## 2 Central African Republic arima013 <ARIMA(0,1,3)>
## 3 Central African Republic stepwise <ARIMA(2,1,2)>
## 4 Central African Republic search <ARIMA(3,1,0)>
```


Central African Republic exports

```
glance(caf_fit) %>% arrange(AICc) %>% select(.model:BIC)
## # A tibble: 4 x 6
## .model sigma2 log_lik AIC AICc BIC
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 search 6.52 -133. 274. 275. 282.
## 2 arima210 6.71 -134. 275. 275. 281.
## 3 arima013 6.54 -133. 274. 275. 282.
## 4 stepwise 6.42 -132. 274. 275. 284.
```


Central African Republic exports

caf_fit \%>\% select(search) \%>\% gg_tsresiduals()

Central African Republic exports

```
augment(caf_fit) %>%
    filter(.model=='search') %>%
    features(.innov, ljung_box, lag = 10, dof = 3)
```

\#\# \# A tibble: 1×4
\#\# Country .model lb_stat lb_pvalue
\#\# <fct> <chr> <dbl> <dbl>
\#\# 1 Central African Republic search 5.75 0.569

Central African Republic exports

```
caf_fit %>%
    forecast(h=5) %>%
    filter(.model=='search') %>%
    autoplot(global_economy)
```


Modelling procedure with ARIMA ()

1. Plot the data. Identify any unusual observations.
2. If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
3 If the data are non-stationary: take first differences of the data until the data are stationary.
4 Examine the $\mathrm{ACF} / \mathrm{PACF}$: Is an $\mathrm{AR}(p)$ or $\mathrm{MA}(q)$ model appropriate?
5 Try your chosen model(s), and use the AICc to search for a better model.
6 Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
7 Once the residuals look like white noise, calculate forecasts.

Automatic modelling procedure with ARIMA()

1 Plot the data. Identify any unusual observations.
2 If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.

3 Use ARIMA to automatically select a model.

6 Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
7 Once the residuals look like white noise, calculate forecasts.

Modelling procedure

Outline

1 Stationarity and differencing
2 Non-seasonal ARIMA models
3 Estimation and order selection
4 ARIMA modelling in R
5 Forecasting
6 Seasonal ARIMA models
7 ARIMA vs ETS

Point forecasts

1. Rearrange ARIMA equation so y_{t} is on LHS.

2 Rewrite equation by replacing t by $T+h$.
3 On RHS, replace future observations by their forecasts, future errors by zero, and past errors by corresponding residuals.

Start with $h=1$. Repeat for $h=2,3, \ldots$.

Point forecasts

ARIMA(3,1,1) forecasts: Step 1

$$
\left(1-\phi_{1} B-\phi_{2} B^{2}-\phi_{3} B^{3}\right)(1-B) y_{t}=\left(1+\theta_{1} B\right) \varepsilon_{t},
$$

Point forecasts

ARIMA(3,1,1) forecasts: Step 1

$$
\begin{aligned}
&\left(1-\phi_{1} B-\phi_{2} B^{2}-\phi_{3} B^{3}\right)(1-B) y_{t}=\left(1+\theta_{1} B\right) \varepsilon_{t}, \\
& {\left[1-\left(1+\phi_{1}\right) B+\left(\phi_{1}-\phi_{2}\right) B^{2}+\left(\phi_{2}-\phi_{3}\right) B^{3}+\phi_{3} B^{4}\right] y_{t} } \\
&=\left(1+\theta_{1} B\right) \varepsilon_{t},
\end{aligned}
$$

Point forecasts

ARIMA(3,1,1) forecasts: Step 1

$$
\left(1-\phi_{1} B-\phi_{2} B^{2}-\phi_{3} B^{3}\right)(1-B) y_{t}=\left(1+\theta_{1} B\right) \varepsilon_{t},
$$

$$
\begin{array}{r}
{\left[1-\left(1+\phi_{1}\right) B+\left(\phi_{1}-\phi_{2}\right) B^{2}+\left(\phi_{2}-\phi_{3}\right) B^{3}+\phi_{3} B^{4}\right] y_{t}} \\
=\left(1+\theta_{1} B\right) \varepsilon_{t},
\end{array}
$$

$$
\begin{aligned}
& y_{t}-\left(1+\phi_{1}\right) y_{t-1}+\left(\phi_{1}-\phi_{2}\right) y_{t-2}+\left(\phi_{2}-\phi_{3}\right) y_{t-3} \\
&+\phi_{3} y_{t-4}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1} .
\end{aligned}
$$

Point forecasts

ARIMA(3,1,1) forecasts: Step 1

$$
\left(1-\phi_{1} B-\phi_{2} B^{2}-\phi_{3} B^{3}\right)(1-B) y_{t}=\left(1+\theta_{1} B\right) \varepsilon_{t},
$$

$$
\begin{array}{r}
{\left[1-\left(1+\phi_{1}\right) B+\left(\phi_{1}-\phi_{2}\right) B^{2}+\left(\phi_{2}-\phi_{3}\right) B^{3}+\phi_{3} B^{4}\right] y_{t}} \\
=\left(1+\theta_{1} B\right) \varepsilon_{t},
\end{array}
$$

$$
\begin{aligned}
& y_{t}-\left(1+\phi_{1}\right) y_{t-1}+\left(\phi_{1}-\phi_{2}\right) y_{t-2}+\left(\phi_{2}-\phi_{3}\right) y_{t-3} \\
&+ \phi_{3} y_{t-4}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1} .
\end{aligned}
$$

$$
\begin{array}{r}
y_{t}=\left(1+\phi_{1}\right) y_{t-1}-\left(\phi_{1}-\phi_{2}\right) y_{t-2}-\left(\phi_{2}-\phi_{3}\right) y_{t-3} \\
\\
-\phi_{3} y_{t-4}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1} .
\end{array}
$$

Point forecasts ($\mathrm{h}=1$)

$$
\begin{array}{r}
y_{t}=\left(1+\phi_{1}\right) y_{t-1}-\left(\phi_{1}-\phi_{2}\right) y_{t-2}-\left(\phi_{2}-\phi_{3}\right) y_{t-3} \\
-\phi_{3} y_{t-4}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1} .
\end{array}
$$

Point forecasts (h=1)

$$
\begin{array}{r}
y_{t}=\left(1+\phi_{1}\right) y_{t-1}-\left(\phi_{1}-\phi_{2}\right) y_{t-2}-\left(\phi_{2}-\phi_{3}\right) y_{t-3} \\
-\phi_{3} y_{t-4}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1} .
\end{array}
$$

ARIMA($3,1,1$) forecasts: Step 2

$$
\begin{array}{r}
y_{T+1}=\left(1+\phi_{1}\right) y_{T}-\left(\phi_{1}-\phi_{2}\right) y_{T-1}-\left(\phi_{2}-\phi_{3}\right) y_{T-2} \\
-\phi_{3} y_{T-3}+\varepsilon_{T+1}+\theta_{1} \varepsilon_{T} .
\end{array}
$$

Point forecasts (h=1)

$$
\begin{array}{r}
y_{t}=\left(1+\phi_{1}\right) y_{t-1}-\left(\phi_{1}-\phi_{2}\right) y_{t-2}-\left(\phi_{2}-\phi_{3}\right) y_{t-3} \\
-\phi_{3} y_{t-4}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1} .
\end{array}
$$

ARIMA(3,1,1) forecasts: Step 2

$$
\begin{array}{r}
y_{T+1}=\left(1+\phi_{1}\right) y_{T}-\left(\phi_{1}-\phi_{2}\right) y_{T-1}-\left(\phi_{2}-\phi_{3}\right) y_{T-2} \\
-\phi_{3} y_{T-3}+\varepsilon_{T+1}+\theta_{1} \varepsilon_{T} .
\end{array}
$$

ARIMA(3,1,1) forecasts: Step 3

$$
\begin{aligned}
\hat{y}_{T+1 \mid T}=\left(1+\phi_{1}\right) y_{T}-\left(\phi_{1}-\phi_{2}\right) y_{T-1} & -\left(\phi_{2}-\phi_{3}\right) y_{T-2} \\
& -\phi_{3} y_{T-3}+\theta_{1} e_{T} .
\end{aligned}
$$

Point forecasts (h=2)

$$
\begin{array}{r}
y_{t}=\left(1+\phi_{1}\right) y_{t-1}-\left(\phi_{1}-\phi_{2}\right) y_{t-2}-\left(\phi_{2}-\phi_{3}\right) y_{t-3} \\
-\phi_{3} y_{t-4}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1} .
\end{array}
$$

Point forecasts (h=2)

$$
\begin{array}{r}
y_{t}=\left(1+\phi_{1}\right) y_{t-1}-\left(\phi_{1}-\phi_{2}\right) y_{t-2}-\left(\phi_{2}-\phi_{3}\right) y_{t-3} \\
-\phi_{3} y_{t-4}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1} .
\end{array}
$$

ARIMA(3,1,1) forecasts: Step 2

$$
\begin{aligned}
y_{T+2}=\left(1+\phi_{1}\right) y_{T+1}-\left(\phi_{1}\right. & \left.-\phi_{2}\right) y_{T}-\left(\phi_{2}-\phi_{3}\right) y_{T-1} \\
& -\phi_{3} y_{T-2}+\varepsilon_{T+2}+\theta_{1} \varepsilon_{T+1} .
\end{aligned}
$$

Point forecasts (h=2)

$$
\begin{array}{r}
y_{t}=\left(1+\phi_{1}\right) y_{t-1}-\left(\phi_{1}-\phi_{2}\right) y_{t-2}-\left(\phi_{2}-\phi_{3}\right) y_{t-3} \\
-\phi_{3} y_{t-4}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1} .
\end{array}
$$

ARIMA($3,1,1$) forecasts: Step 2

$$
\begin{aligned}
y_{T+2}=\left(1+\phi_{1}\right) y_{T+1}-\left(\phi_{1}\right. & \left.-\phi_{2}\right) y_{T}-\left(\phi_{2}-\phi_{3}\right) y_{T-1} \\
& -\phi_{3} y_{T-2}+\varepsilon_{T+2}+\theta_{1} \varepsilon_{T+1} .
\end{aligned}
$$

ARIMA(3,1,1) forecasts: Step 3

$$
\begin{aligned}
\hat{y}_{T+2 \mid T}=\left(1+\phi_{1}\right) \hat{y}_{T+1 \mid T}-\left(\phi_{1}-\phi_{2}\right) y_{T}-\left(\phi_{2}\right. & \left.-\phi_{3}\right) y_{T-1} \\
& -\phi_{3} y_{T-2} .
\end{aligned}
$$

Prediction intervals

95\% prediction interval

$$
\hat{y}_{T+h \mid T} \pm 1.96 \sqrt{v_{T+h \mid T}}
$$

where $v_{T+h \mid T}$ is estimated forecast variance.

Prediction intervals

95\% prediction interval

$$
\hat{y}_{T+h \mid T} \pm 1.96 \sqrt{v_{T+h \mid T}}
$$

where $v_{T+h \mid T}$ is estimated forecast variance.
■ $v_{T+1 \mid T}=\hat{\sigma}^{2}$ for all ARIMA models regardless of parameters and orders.
■ Multi-step prediction intervals for ARIMA(0,0,q):

$$
\begin{gathered}
y_{t}=\varepsilon_{t}+\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i} . \\
v_{T \mid T+h}=\hat{\sigma}^{2}\left[1+\sum_{i=1}^{h-1} \theta_{i}^{2}\right], \quad \text { for } h=2,3, \ldots
\end{gathered}
$$

Prediction intervals

95\% prediction interval

$$
\hat{y}_{T+h \mid T} \pm 1.96 \sqrt{v_{T+h \mid T}}
$$

where $v_{T+h \mid T}$ is estimated forecast variance.
■ Multi-step prediction intervals for ARIMA(0,0,q):

$$
\begin{gathered}
y_{t}=\varepsilon_{t}+\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i} . \\
v_{T \mid T+h}=\hat{\sigma}^{2}\left[1+\sum_{i=1}^{h-1} \theta_{i}^{2}\right], \quad \text { for } h=2,3, \ldots
\end{gathered}
$$

Prediction intervals

95\% prediction interval

$$
\hat{y}_{T+h \mid T} \pm 1.96 \sqrt{v_{T+h \mid T}}
$$

where $v_{T+h \mid T}$ is estimated forecast variance.
■ Multi-step prediction intervals for $\operatorname{ARIMA}(0,0, q)$:

$$
\begin{gathered}
y_{t}=\varepsilon_{t}+\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i} . \\
v_{T \mid T+h}=\hat{\sigma}^{2}\left[1+\sum_{i=1}^{h-1} \theta_{i}^{2}\right], \quad \text { for } h=2,3, \ldots
\end{gathered}
$$

$\square A R(1):$ Rewrite as $M A(\infty)$ and use above result.
\square Other models beyond scope of this subject.

Prediction intervals

■ Prediction intervals increase in size with forecast horizon.

- Prediction intervals can be difficult to calculate by hand
- Calculations assume residuals are uncorrelated and normally distributed.
- Prediction intervals tend to be too narrow.
- the uncertainty in the parameter estimates has not been accounted for.
- the ARIMA model assumes historical patterns will not change during the forecast period.
- the ARIMA model assumes uncorrelated future errors

Outline

1 Stationarity and differencing
2 Non-seasonal ARIMA models
3 Estimation and order selection
4 ARIMA modelling in R
5 Forecasting
6 Seasonal ARIMA models
7 ARIMA vs ETS

Seasonal ARIMA models

where $m=$ number of observations per year.

Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1) $)_{4}$ model (without constant)

Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1) ${ }_{4}$ model (without constant)

$$
\left(1-\phi_{1} B\right)\left(1-\Phi_{1} B^{4}\right)(1-B)\left(1-B^{4}\right) y_{t}=\left(1+\theta_{1} B\right)\left(1+\Theta_{1} B^{4}\right) \varepsilon_{t} .
$$

Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1) $)_{4}$ model (without constant)

$$
\left(1-\phi_{1} B\right)\left(1-\Phi_{1} B^{4}\right)(1-B)\left(1-B^{4}\right) y_{t}=\left(1+\theta_{1} B\right)\left(1+\Theta_{1} B^{4}\right) \varepsilon_{t} .
$$

Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1) ${ }_{4}$ model (without constant)

$$
\left(1-\phi_{1} B\right)\left(1-\Phi_{1} B^{4}\right)(1-B)\left(1-B^{4}\right) y_{t}=\left(1+\theta_{1} B\right)\left(1+\Theta_{1} B^{4}\right) \varepsilon_{t} .
$$

All the factors can be multiplied out and the general model written as follows:

$$
\begin{aligned}
y_{t} & =\left(1+\phi_{1}\right) y_{t-1}-\phi_{1} y_{t-2}+\left(1+\Phi_{1}\right) y_{t-4} \\
& -\left(1+\phi_{1}+\Phi_{1}+\phi_{1} \Phi_{1}\right) y_{t-5}+\left(\phi_{1}+\phi_{1} \Phi_{1}\right) y_{t-6} \\
& -\Phi_{1} y_{t-8}+\left(\Phi_{1}+\phi_{1} \Phi_{1}\right) y_{t-9}-\phi_{1} \Phi_{1} y_{t-10} \\
& +\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\Theta_{1} \varepsilon_{t-4}+\theta_{1} \Theta_{1} \varepsilon_{t-5} .
\end{aligned}
$$

Common ARIMA models

The US Census Bureau uses the following models most often:

ARIMA $(0,1,1)(0,1,1)_{m}$	with log transformation
ARIMA $(0,1,2)(0,1,1)_{m}$	with log transformation
ARIMA $(2,1,0)(0,1,1)_{m}$	with log transformation
ARIMA $(0,2,2)(0,1,1)_{m}$	with log transformation
ARIMA $(2,1,2)(0,1,1)_{m}$	with no transformation

Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF. ARIMA($0,0,0$) $(0,0,1)_{12}$ will show:

■ a spike at lag 12 in the ACF but no other significant spikes.

- The PACF will show exponential decay in the seasonal lags; that is, at lags $12,24,36, \ldots$.

ARIMA($0,0,0$) $(1,0,0)_{12}$ will show:
■ exponential decay in the seasonal lags of the ACF

- a single significant spike at lag 12 in the PACF.

US leisure employment

```
leisure <- us_employment %>%
    filter(Title == "Leisure and Hospitality", year(Month) > 2000) %>%
    mutate(Employed = Employed/1000) %>%
    select(Month, Employed)
autoplot(leisure, Employed) +
    labs(title = "US employment: leisure & hospitality", y="People (millions)")
```

US employment: leisure \& hospitality

US leisure employment

```
leisure %>%
    gg_tsdisplay(difference(Employed, 12), plot_type='partial', lag=36) +
    labs(title="Seasonally differenced", y="")
```

Seasonally differenced

US leisure employment

```
leisure %>%
    gg_tsdisplay(difference(Employed, 12) %>% difference(),
        plot_type='partial', lag=36) +
    labs(title = "Double differenced", y="")
```

Double differenced

US leisure employment

```
fit <- leisure %>%
    model(
        arima012011 = ARIMA(Employed ~ pdq(0,1,2) + PDQ(0,1,1)),
        arima210011 = ARIMA(Employed ~ pdq(2,1,0) + PDQ(0,1,1)),
        auto = ARIMA(Employed, stepwise = FALSE, approx = FALSE)
    )
fit %>% pivot_longer(everything(), names_to = "Model name",
values_to = "Orders")
```

```
## # A mable: 3 x 2
## # Key: Model name [3]
## `Model name` Orders
## <chr> <model>
## 1 arima012011 <ARIMA(0,1,2)(0,1,1)[12]>
## 2 arima210011 <ARIMA(2,1,0)(0,1,1)[12]>
## 3 auto <ARIMA(2,1,0)(1,1,1)[12]>
```


US leisure employment

```
glance(fit) %>% arrange(AICc) %>% select(.model:BIC)
```

\#\# \# A tibble: 3×6
\#\# .model sigma2 log_lik AIC AICc BIC
\#\# <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
\#\# 1 auto 0.00142 395. -780. -780. -763.
\#\# 2 arima210011 0.00145 392. -776. -776. -763.
\#\# 3 arima012011 0.00146 391. -775. -775. -761.

US leisure employment

fit \%>\% select(auto) \%>\% gg_tsresiduals(lag=36)

US leisure employment

```
augment(fit) %>% features(.innov, ljung_box, lag=24, dof=4)
```

\#\# \# A tibble: 3 x 3

\#\#	.model	lb_stat	lb_pvalue
\#\#	<chr>	<dbl>	<dbl>
\#\#	1	arima012011	22.4
\#\#	arima210011	18.9	0.320
\#\#	a	ato	16.6

US leisure employment

```
forecast(fit, h=36) %>%
    filter(.model=='auto') %>%
    autoplot(leisure) +
    labs(title = "US employment: leisure and hospitality", y="Number of people (millio
```

US employment: leisure and hospitality

Cortecosteroid drug sales

```
h02 <- PBS %>%
    filter(ATC2 == "H02") %>%
    summarise(Cost = sum(Cost)/1e6)
```


Cortecosteroid drug sales

```
h02 %>% autoplot(
    Cost
)
```


Cortecosteroid drug sales

```
h02 %>% autoplot(
    log(Cost)
)
```


Cortecosteroid drug sales

```
h02 %>% autoplot(
    log(Cost) %>% difference(12)
)
```


Cortecosteroid drug sales

h02 \% $\%$ gg_tsdisplay(difference $(\log (\operatorname{Cost}), 12)$,

$l_{\text {ag_max }}=36$, plot_type $=$ 'partial')

Cortecosteroid drug sales

- Choose $D=1$ and $d=0$.

■ Spikes in PACF at lags 12 and 24 suggest seasonal AR(2) term.

- Spikes in PACF suggests possible non-seasonal AR(3) term.

■ Initial candidate model: ARIMA(3,0,0)(2,1,0) ${ }_{12}$.

Cortecosteroid drug sales

. model	AICc
ARIMA $(3,0,1)(0,1,2)[12]$	-485
ARIMA $(3,0,1)(1,1,1)[12]$	-484
ARIMA $(3,0,1)(0,1,1)[12]$	-484
ARIMA $(3,0,1)(2,1,0)[12]$	-476
ARIMA $(3,0,0)(2,1,0)[12]$	-475
ARIMA $(3,0,2)(2,1,0)[12]$	-475
ARIMA $(3,0,1)(1,1,0)[12]$	-463

Cortecosteroid drug sales

```
fit <- h02 %>%
    model(best = ARIMA(log(Cost) ~ 0 + pdq(3,0,1) + PDQ (0, 1, 2)))
report(fit)
```

\#\# Series: Cost
\#\# Model: ARIMA(3,0,1)(0,1,2)[12]
\#\# Transformation: log(Cost)
\#\#
\#\# Coefficients:

\#\#	ar1	ar2	ar3	ma1	sma1	sma2
\#\#	-0.160	0.5481	0.5678	0.383	-0.5222	-0.1768
\#\# s.e.	0.164	0.0878	0.0942	0.190	0.0861	0.0872

\#\#
\#\# sigma^2 estimated as 0.004278: log likelihood=250
\#\# AIC $=-486 \quad$ AICC $=-485 \quad B I C=-463$

Cortecosteroid drug sales

gg_tsresiduals(fit)

Cortecosteroid drug sales

```
augment(fit) %>%
    features(.innov, ljung_box, lag = 36, dof = 6)
```

\#\# \# A tibble: 1×3
\#\# .model lb_stat lb_pvalue

\#\#	<chr>	<dbl>	<dbl>
\#\# 1 best	50.7	0.0104	

Cortecosteroid drug sales

```
fit <- h02 %>% model(auto = ARIMA(log(Cost)))
report(fit)
```

```
## Series: Cost
## Model: ARIMA(2,1,0)(0,1,1)[12]
## Transformation: log(Cost)
##
## Coefficients:
\begin{tabular}{lrrr} 
\#\# & ar1 & ar2 & sma1 \\
\#\# & -0.8491 & -0.4207 & -0.6401 \\
\#\# s.e. & 0.0712 & 0.0714 & 0.0694
\end{tabular}
```

\#\#
\#\# sigma^2 estimated as 0.004387: log likelihood=245
\#\# AIC $=-483 \quad$ AICc $=-483 \quad B I C=-470$

Cortecosteroid drug sales

gg_tsresiduals(fit)

Cortecosteroid drug sales

```
augment(fit) %>%
    features(.innov, ljung_box, lag = 36, dof = 3)
```

\#\# \# A tibble: 1×3
\#\# .model lb_stat lb_pvalue
\#\# <chr> <dbl> <dbl>
\#\# 1 auto 59.30 .00332

Cortecosteroid drug sales

```
fit <- h02 %>%
    model(best = ARIMA(log(Cost), stepwise = FALSE,
                                    approximation = FALSE,
    order_constraint = p + q + P + Q <= 9))
report(fit)
## Series: Cost
## Model: ARIMA(4,1,1)(2,1,2)[12]
## Transformation: log(Cost)
##
## Coefficients:
\begin{tabular}{lrrrrrrrrr} 
\#\# & ar1 & ar2 & ar3 & ar4 & ma1 & sar1 & sar2 & sma1 & sma2 \\
\#\# & -0.0425 & 0.210 & 0.202 & -0.227 & -0.742 & 0.621 & -0.383 & -1.202 & 0.496 \\
\#\# s.e. & 0.2167 & 0.181 & 0.114 & 0.081 & 0.207 & 0.242 & 0.118 & 0.249 & 0.213
\end{tabular}
##
## sigma^2 estimated as 0.004049: log likelihood=254
## AIC=-489 AICc=-487 BIC=-456
```


Cortecosteroid drug sales

gg_tsresiduals(fit)

Cortecosteroid drug sales

```
augment(fit) %>%
    features(.innov, ljung_box, lag = 36, dof = 9)
```

\#\# \# A tibble: 1×3
\#\# .model lb_stat lb_pvalue
\#\# <chr> <dbl> <dbl>
\#\# 1 best 36.50 .106

Cortecosteroid drug sales

Training data: July 1991 to June 2006
Test data: July 2006-June 2008

```
fit <- h02 %>%
    filter_index(~ "2006 Jun") %>%
    model(
        ARIMA(log(Cost) ~ 0 + pdq(3, 0, 0) + PDQ(2, 1, 0)),
        ARIMA(log(Cost) ~ 0 + pdq(3, 0, 1) + PDQ(2, 1, 0)),
        ARIMA(log(Cost) ~ 0 + pdq(3, 0, 2) + PDQ(2, 1, 0)),
        ARIMA(log(Cost) ~ 0 + pdq(3, 0, 1) + PDQ(1, 1, 0))
        # ... #
    )
fit %>%
    forecast(h = "2 years") %>%
    accuracy(h02)
```


Cortecosteroid drug sales

model	RMSE
ARIMA $(3,0,1)(1,1,1)[12]$	0.0619
ARIMA $(3,0,1)(0,1,2)[12]$	0.0621
ARIMA $(3,0,1)(0,1,1)[12]$	0.0630
ARIMA $(2,1,0)(0,1,1)[12]$	0.0630
ARIMA $(4,1,1)(2,1,2)[12]$	0.0631
ARIMA $(3,0,2)(2,1,0)[12]$	0.0651
ARIMA $(3,0,1)(2,1,0)[12]$	0.0653
ARIMA $(3,0,1)(1,1,0)[12]$	0.0666
ARIMA $(3,0,0)(2,1,0)[12]$	0.0668

Cortecosteroid drug sales

■ Models with lowest AICc values tend to give slightly better results than the other models.
■ AICc comparisons must have the same orders of differencing. But RMSE test set comparisons can involve any models.
■ Use the best model available, even if it does not pass all tests.

Cortecosteroid drug sales

```
fit <- h02 %>%
    model(ARIMA(Cost ~ 0 + pdq(3,0,1) + PDQ(0,1,2)))
fit %>% forecast %>% autoplot(h02) +
    labs(y = "H02 Expenditure ($AUD)")
```


Outline

1 Stationarity and differencing
2 Non-seasonal ARIMA models
3 Estimation and order selection
4 ARIMA modelling in R
5 Forecasting
6 Seasonal ARIMA models
7 ARIMA vs ETS

ARIMA vs ETS

- Myth that ARIMA models are more general than exponential smoothing.
■ Linear exponential smoothing models all special cases of ARIMA models.
■ Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models have no exponential smoothing counterparts.
- ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models have one unit root.

ARIMA vs ETS

ETS models

ARIMA models

9 ETS models with multiplicative errors

3 ETS models with
additive errors and multiplicative seasonality

Equivalences

ETS model ARIMA model

ETS(A,N,N) ARIMA(0,1,1)
ETS(A,A,N) ARIMA(0,2,2)
$\operatorname{ETS}\left(\mathrm{A}, \mathrm{A}_{\mathrm{d}}, \mathrm{N}\right) \quad$ ARIMA(1,1,2)

Parameters

$$
\begin{aligned}
& \theta_{1}=\alpha-1 \\
& \theta_{1}=\alpha+\beta-2 \\
& \theta_{2}=1-\alpha \\
& \phi_{1}=\phi \\
& \theta_{1}=\alpha+\phi \beta-1-\phi \\
& \theta_{2}=(1-\alpha) \phi
\end{aligned}
$$

ETS(A,N,A) ARIMA(0,0,m)(0,1,0) ${ }_{m}$
$\operatorname{ETS}(A, A, A) \quad \operatorname{ARIMA}(0,1, m+1)(0,1,0)_{m}$
$\operatorname{ETS}\left(A, A_{d}, A\right) \quad \operatorname{ARIMA}(1,0, m+1)(0,1,0)_{m}$

Example: Australian population

```
aus_economy <- global_economy %>% filter(Code == "AUS") %>%
    mutate(Population = Population/1e6)
aus_economy %>%
    slice(-n()) %>%
    stretch_tsibble(.init = 10) %>%
    model(ets = ETS(Population),
        arima = ARIMA(Population)
    ) %>%
    forecast(h = 1) %>%
    accuracy(aus_economy) %>%
    select(.model, ME:RMSSE)
```

\#\# \# A tibble: 2×8

\#\#	.model	ME	RMSE	MAE	MPE	MAPE	MASE	RMSSE
\#\#	<chr>	<dbl>						
\#\#	1	arima	0.0420	0.194	0.0789	0.277	0.509	0.317
\#\#	2 ets	0.0202	0.0774	0.0543	0.112	0.327	0.218	0.298

Example: Australian population

```
aus_economy %>%
    model(ETS(Population)) %>%
    forecast(h = "5 years") %>%
    autoplot(aus_economy) +
    labs(title = "Australian population", y = "People (millions)")
```

Australian population

Example: Cement production

```
cement <- aus_production %>%
    select(Cement) %>%
    filter_index("1988 Q1" ~ .)
train <- cement %>% filter_index(. ~ "2007 Q4")
fit <- train %>%
    model(
        arima = ARIMA(Cement),
        ets = ETS(Cement)
    )
```


Example: Cement production

```
fit %>%
    select(arima) %>%
    report()
## Series: Cement
## Model: ARIMA(1,0,1)(2,1,1)[4] w/ drift
##
## Coefficients:
\begin{tabular}{lrrrrrr} 
\#\# & ar1 & ma1 & sar1 & sar2 & sma1 & constant \\
\#\# & 0.8886 & -0.237 & 0.081 & -0.234 & -0.898 & 5.39 \\
\#\# s.e. & 0.0842 & 0.133 & 0.157 & 0.139 & 0.178 & 1.48
\end{tabular}
##
## sigma^2 estimated as 11456: log likelihood=-464
## AIC=941 AICc=943 BIC=957
```


Example: Cement production

```
fit %>% select(ets) %>% report()
## Series: Cement
## Model: ETS(M,N,M)
## Smoothing parameters:
## alpha = 0.753
## gamma = 1e-04
##
## Initial states:
## l[0] s[0] s[-1] s[-2] s[-3]
## 1695 1.03 1.05 1.01 0.912
##
## sigma^2: 0.0034
##
## AIC AICc BIC
## 1104 1106 1121
```


Example: Cement production

gg_tsresiduals(fit \%>\% select(arima), lag_max $=16$)

Example: Cement production

gg_tsresiduals(fit \%>\% select(ets), lag_max = 16)

Example: Cement production

```
fit %>%
    select(arima) %>%
    augment() %>%
    features(.innov, ljung_box, lag = 16, dof = 6)
```

\#\# \# A tibble: 1×3
\#\# .model lb_stat lb_pvalue
\#\# <chr> <dbl> <dbl>
\#\# 1 arima $6.37 \quad 0.783$

Example: Cement production

```
fit %>%
    select(ets) %>%
    augment() %>%
    features(.innov, ljung_box, lag = 16, dof = 6)
```

\#\# \# A tibble: 1 x 3
\#\# .model lb_stat lb_pvalue
\#\# <chr> <dbl> <dbl>
\#\# 1 ets $10.0 \quad 0.438$

Example: Cement production

```
fit %>%
    forecast(h = "2 years 6 months") %>%
    accuracy(cement) %>%
    select(-ME, -MPE, -ACF1)
```

\#\# \# A tibble: 2×7
\#\# .model .type RMSE MAE MAPE MASE RMSSE
\#\# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
\#\# 1 arima Test 216. 186. 8.68 1.27 1.26
\#\# 2 ets Test 222. 191. 8.85 1.30 1.29

Example: Cement production

```
fit %>%
    select(arima) %>%
    forecast(h="3 years") %>%
    autoplot(cement) +
    labs(title = "Cement production in Australia", y="Tonnes ('000)")
```

Cement production in Australia

