

MONASH BUSINESS SCHOOL

ETC3550/ETC5550 Applied forecasting

Ch7. Regression models

OTexts.org/fpp3/

Outline

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation

7 Correlation, causation and forecasting

Outline

1 The linear model with time series

- 2 Some useful predictors for linear models
- **3** Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation

7 Correlation, causation and forecasting

Multiple regression and forecasting

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \dots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

- *y_t* is the variable we want to predict: the "response" variable
 Each *x_{j,t}* is numerical and is called a "predictor". They are usually assumed to be known for all past and future times.
- The coefficients β_1, \ldots, β_k measure the effect of each predictor after taking account of the effect of all other predictors in the model.

That is, the coefficients measure the marginal effects.

 \bullet ε_t is a white noise error term


```
fit_consMR <- us_change %>%
    model(lm = TSLM(Consumption ~ Income + Production + Unemployment + Savings))
report(fit_consMR)
```

```
## Series: Consumption
## Model: TSLM
##
## Residuals:
     Min 10 Median 30
##
                              Max
## -0.906 -0.158 -0.036 0.136 1.155
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.25311 0.03447 7.34 5.7e-12 ***
## Income
         0.74058 0.04012 18.46 < 2e-16 ***
## Production 0.04717 0.02314 2.04 0.043 *
## Unemployment -0.17469 0.09551 -1.83 0.069.
## Savings -0.05289 0.00292 -18.09 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.31 on 193 degrees of freedom
## Multiple R-squared: 0.768. Adjusted R-squared: 0.763
## E-statistic: 160 on 4 and 193 DE n-value: <2e-16
```


Percentage change in US consumption expenditure

fit_consMR %>% gg_tsresiduals()

1 The linear model with time series

- 2 Some useful predictors for linear models
- **3** Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation

7 Correlation, causation and forecasting

Linear trend

$$x_t = t$$

Nonlinear trend

Piecewise linear trend with bend at τ

$$\begin{aligned} x_{1,t} &= t \\ x_{2,t} &= \begin{cases} 0 & t < \tau \\ (t - \tau) & t \geq \tau \end{cases} \end{aligned}$$

Nonlinear trend

Piecewise linear trend with bend at τ

$$\begin{aligned} x_{1,t} &= t \\ x_{2,t} &= \begin{cases} 0 & t < \tau \\ (t - \tau) & t \geq \tau \end{cases} \end{aligned}$$

Quadratic or higher order trend

$$x_{1,t} = t$$
, $x_{2,t} = t^2$, ...

Nonlinear trend

Piecewise linear trend with bend at au

$$\begin{aligned} x_{1,t} &= t \\ x_{2,t} &= \begin{cases} 0 & t < \tau \\ (t - \tau) & t \geq \tau \end{cases} \end{aligned}$$

Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

NOT RECOMMENDED!

Dummy variables

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then an equivalent numerical variable can be constructed taking value 1 if yes and 0 if no. This is called a dummy variable.

	Α	В
1	Yes	1
2	Yes	1
3	No	0
4	Yes	1
5	No	0
6	No	0
7	Yes	1
8	Yes	1
9	No	0
10	No	0
11	No	0
12	No	0
13	Yes	1
14	No	0

Dummy variables

If there are more than two categories, then the variable can be coded using several dummy variables (one fewer than the total number of categories).

	A	В	С	D	E
1	Monday	1	0	0	0
2	Tuesday	0	1	0	0
3	Wednesday	0	0	1	0
4	Thursday	0	0	0	1
5	Friday	0	0	0	0
6	Monday	1	0	0	0
7	Tuesday	0	1	0	0
8	Wednesday	0	0	1	0
9	Thursday	0	0	0	1
10	Friday	0	0	0	0
11	Monday	1	0	0	0
12	Tuesday	0	1	0	0
13	Wednesday	0	0	1	0
14	Thursday	0	0	0	1
15	Friday	0	0	0	0

Beware of the dummy variable trap!

- Using one dummy for each category gives too many dummy variables!
- The regression will then be singular and inestimable.
- Either omit the constant, or omit the dummy for one category.
- The coefficients of the dummies are relative to the omitted category.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

If there is an outlier, you can use a dummy variable to remove its effect.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

If there is an outlier, you can use a dummy variable to remove its effect.

Public holidays

■ For daily data: if it is a public holiday, dummy=1, otherwise dummy=0. 17

 $d_{i,t} = 1$ if t is quarter i and 0 otherwise.

fit_beer <- recent_production %>% model(TSLM(Beer ~ trend() + season()))
report(fit_beer)

```
## Series: Beer
## Model: TSLM
##
## Residuals:
  Min 10 Median 30 Max
##
## -42.9 -7.6 -0.5 8.0 21.8
##
## Coefficients:
    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 441.8004 3.7335 118.33 < 2e-16 ***
## trend() -0.3403 0.0666 -5.11 2.7e-06 ***
## season()year2 -34.6597 3.9683 -8.73 9.1e-13 ***
## season()year3 -17.8216 4.0225 -4.43 3.4e-05 ***
## season()vear4 72.7964 4.0230 18.09 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.2 on 69 degrees of freedom
```

```
augment(fit_beer) %>%
ggplot(aes(x = Quarter)) +
geom_line(aes(y = Beer, colour = "Data")) +
geom_line(aes(y = .fitted, colour = "Fitted")) +
labs(y="Megalitres",title ="Australian quarterly beer production") +
scale_colour_manual(values = c(Data = "black", Fitted = "#D55E00"))
```



```
augment(fit_beer) %>%
ggplot(aes(x=Beer, y=.fitted, colour=factor(quarter(Quarter)))) +
geom_point() +
labs(y="Fitted", x="Actual values", title = "Quarterly beer production") +
scale_colour_brewer(palette="Dark2", name="Quarter") +
geom_abline(intercept=0, slope=1)
```


fit_beer %>% gg_tsresiduals()

fit_beer %>% forecast %>% autoplot(recent_production)

Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

$$s_{k}(t) = \sin\left(\frac{2\pi kt}{m}\right) \qquad c_{k}(t) = \cos\left(\frac{2\pi kt}{m}\right)$$
$$y_{t} = a + bt + \sum_{k=1}^{K} \left[\alpha_{k}s_{k}(t) + \beta_{k}c_{k}(t)\right] + \varepsilon_{t}$$

- Every periodic function can be approximated by sums of sin and cos terms for large enough K.
- Choose *K* by minimizing AICc.
- Called "harmonic regression"

```
TSLM(y ~ trend() + fourier(K))
```

Harmonic regression: beer production

fourier_beer <- recent_production %>% model(TSLM(Beer ~ trend() + fourier(K=2)))
report(fourier_beer)

```
## Series: Beer
## Model: TSLM
##
## Residuals:
## Min 10 Median 30 Max
## -42.9 -7.6 -0.5 8.0 21.8
##
## Coefficients:
       Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 446.8792 2.8732 155.53 < 2e-16 ***
## trend() -0.3403 0.0666 -5.11 2.7e-06 ***
## fourier(K = 2)C1_4 8.9108 2.0112 4.43 3.4e-05 ***
## fourier(K = 2)S1_4 -53.7281 2.0112 -26.71 < 2e-16 ***</pre>
## fourier(K = 2)C2 4 -13.9896 1.4226 -9.83 9.3e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.2 on 69 degrees of freedom
```

```
aus_cafe <- aus_retail %>% filter(
    Industry == "Cafes, restaurants and takeaway food services",
    year(Month) %in% 2004:2018
) %>% summarise(Turnover = sum(Turnover))
aus_cafe %>% autoplot(Turnover)
```


fit <- aus_cafe %>%	
<pre>model(K1 = TSLM(log(Turnover) ~ trend()</pre>	+ fourier(K = 1)),
<pre>K2 = TSLM(log(Turnover) ~ trend()</pre>	+ fourier(K = 2)),
<pre>K3 = TSLM(log(Turnover) ~ trend()</pre>	+ fourier(<mark>K = 3</mark>)),
<pre>K4 = TSLM(log(Turnover) ~ trend()</pre>	+ fourier(K = 4)),
<pre>K5 = TSLM(log(Turnover) ~ trend()</pre>	+ fourier(<mark>K = 5</mark>)),
<pre>K6 = TSLM(log(Turnover) ~ trend()</pre>	+ fourier(<mark>K = 6</mark>)))
<pre>glance(fit) %>% select(.model, r_squared,</pre>	adj_r_squared, AICc

##	#	A tibb	le: 6 x 4		
##		.model	r_squared	adj_r_squared	AICc
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	K1	0.962	0.962	-1085.
##	2	K2	0.966	0.965	-1099.
##	3	K3	0.976	0.975	-1160.
##	4	K4	0.980	0.979	-1183.
##	5	K5	0.985	0.984	-1234.
##	6	K6	0.985	0.984	-1232.

Harmonic regression: eating-out expenditure

Harmonic regression: eating-out expenditure

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Steps

■ Variable takes value 0 before the intervention and 1 afterwards.

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Steps

Variable takes value 0 before the intervention and 1 afterwards.

Change of slope

Variables take values 0 before the intervention and values
 {1, 2, 3, ...} afterwards.

For monthly data

- Christmas: always in December so part of monthly seasonal effect
- Easter: use a dummy variable $v_t = 1$ if any part of Easter is in that month, $v_t = 0$ otherwise.
- Ramadan and Chinese new year similar.

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

x₁ = advertising for previous month;
x₂ = advertising for two months previously;
:
x_m = advertising for m months previously.

```
marathon <- boston_marathon %>%
  filter(Event == "Men's open division") %>%
  select(-Event) %>%
  mutate(Minutes = as.numeric(Time)/60)
marathon %>% autoplot(Minutes) + labs(y="Winning times in minutes")
```


37

```
fit_trends <- marathon %>%
model(
    # Linear trend
    linear = TSLM(Minutes ~ trend()),
    # Exponential trend
    exponential = TSLM(log(Minutes) ~ trend()),
    # Piecewise linear trend
    piecewise = TSLM(Minutes ~ trend(knots = c(1940, 1980)))
)
```

fit_trends

A mable: 1 x 3
linear exponential piecewise
<model> <model> <model>
1 <TSLM> <TSLM> <TSLM>

fit_trends %>% forecast(h=10) %>% autoplot(marathon)

fit_trends %>%
 select(piecewise) %>%
 gg_tsresiduals()

1 The linear model with time series

2 Some useful predictors for linear models

3 Residual diagnostics

- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation

7 Correlation, causation and forecasting

For forecasting purposes, we require the following assumptions:

- \bullet ε_t are uncorrelated and zero mean
- ε_t are uncorrelated with each $x_{j,t}$.

For forecasting purposes, we require the following assumptions:

- \bullet ε_t are uncorrelated and zero mean
- ε_t are uncorrelated with each $x_{j,t}$.
- It is **useful** to also have $\varepsilon_t \sim N(0, \sigma^2)$ when producing prediction intervals or doing statistical tests.

Useful for spotting outliers and whether the linear model was appropriate.

- Scatterplot of residuals ε_t against each predictor $x_{i,t}$.
- Scatterplot residuals against the fitted values \hat{y}_t
- Expect to see scatterplots resembling a horizontal band with no values too far from the band and no patterns such as curvature or increasing spread.

- If a plot of the residuals vs any predictor in the model shows a pattern, then the relationship is nonlinear.
- If a plot of the residuals vs any predictor **not** in the model shows a pattern, then the predictor should be added to the model.
- If a plot of the residuals vs fitted values shows a pattern, then there is heteroscedasticity in the errors. (Could try a transformation.)

- 2 Some useful predictors for linear models
- **3** Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation

7 Correlation, causation and forecasting

Computer output for regression will always give the R^2 value. This is a useful summary of the model.

- It is equal to the square of the correlation between y and \hat{y} .
- It is often called the "coefficient of determination' '.
- It can also be calculated as follows:

$$\mathsf{R}^2 = \frac{\sum (\hat{y}_t - \bar{y})^2}{\sum (y_t - \bar{y})^2}$$

It is the proportion of variance accounted for (explained) by the predictors.

Comparing regression models

However ...

- \blacksquare R^2 does not allow for "degrees of freedom".
- Adding *any* variable tends to increase the value of R², even if that variable is irrelevant.

Comparing regression models

However ...

- \blacksquare R^2 does not allow for "degrees of freedom".
- Adding *any* variable tends to increase the value of R², even if that variable is irrelevant.

To overcome this problem, we can use *adjusted* R^2 :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

Comparing regression models

However ...

- \blacksquare R^2 does not allow for "degrees of freedom".
- Adding any variable tends to increase the value of R², even if that variable is irrelevant.

To overcome this problem, we can use *adjusted* R^2 :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

Maximizing \bar{R}^2 is equivalent to minimizing $\hat{\sigma}^2$.

$$\hat{\sigma}^2 = \frac{1}{T-k-1} \sum_{t=1}^{l} \varepsilon_t^2$$

Akaike's Information Criterion

$$AIC = -2\log(L) + 2(k+2)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

Akaike's Information Criterion

$$AIC = -2\log(L) + 2(k+2)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

- AIC penalizes terms more heavily than \bar{R}^2 .
- Minimizing the AIC is asymptotically equivalent to minimizing MSE via leave-one-out cross-validation (for any linear regression).

For small values of *T*, the AIC tends to select too many predictors, and so a bias-corrected version of the AIC has been developed.

$$AIC_{C} = AIC + \frac{2(k+2)(k+3)}{T-k-3}$$

As with the AIC, the AIC_c should be minimized.

Bayesian Information Criterion

$$BIC = -2\log(L) + (k+2)\log(T)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

Bayesian Information Criterion

$$BIC = -2\log(L) + (k+2)\log(T)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

- BIC penalizes terms more heavily than AIC
- Also called SBIC and SC.
- Minimizing BIC is asymptotically equivalent to leave-v-out cross-validation when v = T[1 1/(log(T) 1)].

For regression, leave-one-out cross-validation is faster and more efficient than time-series cross-validation.

- Select one observation for test set, and use *remaining* observations in training set. Compute error on test observation.
- Repeat using each possible observation as the test set.
- Compute accuracy measure over all errors.

Traditional evaluation

Leave-one-out cross-validation

Best subsets regression

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

Best subsets regression

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

Warning!

- If there are a large number of predictors, this is not possible.
- For example, 44 predictors leads to 18 trillion possible models!

Backwards stepwise regression

- Start with a model containing all variables.
- Try subtracting one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.

Backwards stepwise regression

- Start with a model containing all variables.
- Try subtracting one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.

Notes

- Stepwise regression is not guaranteed to lead to the best possible model.
- Inference on coefficients of final model will be wrong.

Outline

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- **3** Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting
Ex-ante versus ex-post forecasts

- *Ex ante forecasts* are made using only information available in advance.
 - require forecasts of predictors
- *Ex post forecasts* are made using later information on the predictors.
 - useful for studying behaviour of forecasting models.
- trend, seasonal and calendar variables are all known in advance, so these don't need to be forecast.

Scenario based forecasting

 Assumes possible scenarios for the predictor variables
 Prediction intervals for scenario based forecasts do not include the uncertainty associated with the future values of the predictor variables.

Building a predictive regression model

 If getting forecasts of predictors is difficult, you can use lagged predictors instead.

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t-h} + \dots + \beta_k \mathbf{x}_{k,t-h} + \varepsilon_t$$

A different model for each forecast horizon *h*.

US Consumption

```
fit_consBest <- us_change %>%
 model(
   TSLM(Consumption ~ Income + Savings + Unemployment)
  )
future_scenarios <- scenarios(</pre>
 Increase = new_data(us_change, 4) %>%
    mutate(Income=1, Savings=0.5, Unemployment=0),
 Decrease = new data(us change, 4) %>%
    mutate(Income=-1, Savings=-0.5, Unemployment=0),
 names_to = "Scenario")
```

fc <- forecast(fit_consBest, new_data = future_scenarios)</pre>

US Consumption

```
us_change %>% autoplot(Consumption) +
   labs(y="% change in US consumption") +
   autolayer(fc) +
   labs(title = "US consumption", y = "% change")
```


Outline

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- **3** Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \dots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

Let
$$\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_T)', \, \boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_T)', \, \boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)' \text{ and}$$
$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{k,1} \\ 1 & x_{1,2} & x_{2,2} & \dots & x_{k,2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1,T} & x_{2,T} & \dots & x_{k,T} \end{bmatrix}.$$

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

Let
$$\mathbf{y} = (y_1, \dots, y_T)', \, \boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_T)', \, \boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)' \text{ and}$$

$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{k,1} \\ 1 & x_{1,2} & x_{2,2} & \dots & x_{k,2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1,T} & x_{2,T} & \dots & x_{k,T} \end{bmatrix}.$$

Then

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}.$$

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{oldsymbol{eta}}$$
 = (X'X) $^{-1}$ X'y

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{oldsymbol{eta}}$$
 = (X'X) $^{-1}$ X'y

(The "normal equation".)

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{eta} = (X'X)^{-1}X'y$$

(The "normal equation".)

$$\hat{\sigma}^2 = \frac{1}{T-k-1} (\mathbf{y} - \mathbf{X}\hat{\beta})' (\mathbf{y} - \mathbf{X}\hat{\beta})$$

Note: If you fall for the dummy variable trap, (X'X) is a singular matrix. ₆₄

So the likelihood is $L = \frac{1}{\sigma^{T} (2\pi)^{T/2}} \exp \left(-\frac{1}{2\sigma^{2}} (\mathbf{y} - \mathbf{X}\beta)' (\mathbf{y} - \mathbf{X}\beta)\right)$

So the likelihood is $L = \frac{1}{\sigma^{T} (2\pi)^{T/2}} \exp \left(-\frac{1}{2\sigma^{2}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$

which is maximized when $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$ is minimized.

So the likelihood is $L = \frac{1}{\sigma^{T}(2\pi)^{T/2}} \exp\left(-\frac{1}{2\sigma^{2}}(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)\right)$ which is maximized when $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$ is minimized. So MLE = OLS.

Multiple regression forecasts

Optimal forecasts

$$\hat{y}^* = \mathsf{E}(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X' y$$

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as \mathbf{X}).

Multiple regression forecasts

Optimal forecasts

$$\hat{y}^* = \mathsf{E}(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X' y$$

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as \mathbf{X}).

Forecast variance

$$\mathsf{Var}(\mathbf{y}^*|\mathbf{X}, \mathbf{x}^*) = \sigma^2 \left[\mathbf{1} + \mathbf{x}^* (\mathbf{X}' \mathbf{X})^{-1} (\mathbf{x}^*)' \right]$$

Multiple regression forecasts

Optimal forecasts

$$\hat{y}^* = \mathsf{E}(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X' y$$

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as \mathbf{X}).

Forecast variance

$$\operatorname{Var}(\boldsymbol{y}^*|\boldsymbol{X},\boldsymbol{x}^*) = \sigma^2 \left[\mathbf{1} + \boldsymbol{x}^* (\boldsymbol{X}' \boldsymbol{X})^{-1} (\boldsymbol{x}^*)' \right]$$

This ignores any errors in **x***.

■ 95% prediction intervals assuming normal errors:

$$\hat{y}^* \pm 1.96 \sqrt{Var(y^* | X, x^*)}.$$
 66

Outline

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- **3** Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

Correlation is not causation

- When x is useful for predicting y, it is not necessarily causing y.
- e.g., predict number of drownings y using number of ice-creams sold x.
- Correlations are useful for forecasting, even when there is no causality.
- Better models usually involve causal relationships (e.g., temperature x and people z to predict drownings y).

In regression analysis, multicollinearity occurs when:

- Two predictors are highly correlated (i.e., the correlation between them is close to ±1).
- A linear combination of some of the predictors is highly correlated with another predictor.
- A linear combination of one subset of predictors is highly correlated with a linear combination of another subset of predictors.

Multicollinearity

If multicollinearity exists...

- the numerical estimates of coefficients may be wrong (worse in Excel than in a statistics package)
- don't rely on the *p*-values to determine significance.
- there is no problem with model *predictions* provided the predictors used for forecasting are within the range used for fitting.
- omitting variables can help.
- combining variables can help.