
ETC3550/ETC5550
Applied forecasting

Ch7. Regression models

OTexts.org/fpp3/



Outline

1 The linear model with time series

2 Some useful predictors for linear models

3 Residual diagnostics

4 Selecting predictors and forecast evaluation

5 Forecasting with regression

6 Matrix formulation

7 Correlation, causation and forecasting
2



Outline

1 The linear model with time series

2 Some useful predictors for linear models

3 Residual diagnostics

4 Selecting predictors and forecast evaluation

5 Forecasting with regression

6 Matrix formulation

7 Correlation, causation and forecasting
3



Multiple regression and forecasting

yt = β0 + β1x1,t + β2x2,t + · · · + βkxk,t + εt.

yt is the variable we want to predict: the “response” variable
Each xj,t is numerical and is called a “predictor”. They are usually
assumed to be known for all past and future times.
The coefficients β1, . . . , βk measure the effect of each predictor
after taking account of the effect of all other predictors in the
model.

That is, the coefficients measure themarginal effects.

εt is a white noise error term 4



Example: US consumption expenditure
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Example: US consumption expenditure
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Example: US consumption expenditure

fit_consMR <- us_change %>%
model(lm = TSLM(Consumption ~ Income + Production + Unemployment + Savings))

report(fit_consMR)

## Series: Consumption
## Model: TSLM
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.906 -0.158 -0.036 0.136 1.155
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.25311 0.03447 7.34 5.7e-12 ***
## Income 0.74058 0.04012 18.46 < 2e-16 ***
## Production 0.04717 0.02314 2.04 0.043 *
## Unemployment -0.17469 0.09551 -1.83 0.069 .
## Savings -0.05289 0.00292 -18.09 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.31 on 193 degrees of freedom
## Multiple R-squared: 0.768, Adjusted R-squared: 0.763
## F-statistic: 160 on 4 and 193 DF, p-value: <2e-16
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Example: US consumption expenditure
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Example: US consumption expenditure
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Example: US consumption expenditure

fit_consMR %>% gg_tsresiduals()
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Trend

Linear trend
xt = t

t = 1, 2, . . . , T
Strong assumption that trend will continue.
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Nonlinear trend

Piecewise linear trend with bend at τ
x1,t = t

x2,t =
 0 t < τ

(t− τ ) t ≥ τ

Quadratic or higher order trend
x1,t = t, x2,t = t2, . . .

NOT RECOMMENDED!
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Dummy variables

14

If a categorical variable takes
only two values (e.g., ‘Yes’ or
‘No’), then an equivalent
numerical variable can be
constructed taking value 1 if
yes and 0 if no. This is called
a dummy variable.



Dummy variables

15

If there are more than two
categories, then the variable
can be coded using several
dummy variables (one fewer
than the total number of
categories).



Beware of the dummy variable trap!

Using one dummy for each category gives too many dummy
variables!
The regression will then be singular and inestimable.
Either omit the constant, or omit the dummy for one category.
The coefficients of the dummies are relative to the omitted
category.
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Uses of dummy variables

Seasonal dummies

For quarterly data: use 3 dummies
For monthly data: use 11 dummies
For daily data: use 6 dummies
What to do with weekly data?

Outliers

If there is an outlier, you can use a dummy variable to remove its
effect.

Public holidays

For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.
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Beer production revisited
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di,t = 1 if t is quarter i and 0 otherwise.

18



Beer production revisited

400

450

500

1995 Q1 2000 Q1 2005 Q1 2010 Q1
Quarter [1Q]

M
eg

al
itr

es

Australian quarterly beer production

Regression model
yt = β0 + β1t + β2d2,t + β3d3,t + β4d4,t + εt

di,t = 1 if t is quarter i and 0 otherwise. 18



Beer production revisited

fit_beer <- recent_production %>% model(TSLM(Beer ~ trend() + season()))
report(fit_beer)

## Series: Beer
## Model: TSLM
##
## Residuals:
## Min 1Q Median 3Q Max
## -42.9 -7.6 -0.5 8.0 21.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 441.8004 3.7335 118.33 < 2e-16 ***
## trend() -0.3403 0.0666 -5.11 2.7e-06 ***
## season()year2 -34.6597 3.9683 -8.73 9.1e-13 ***
## season()year3 -17.8216 4.0225 -4.43 3.4e-05 ***
## season()year4 72.7964 4.0230 18.09 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.2 on 69 degrees of freedom
## Multiple R-squared: 0.924, Adjusted R-squared: 0.92
## F-statistic: 211 on 4 and 69 DF, p-value: <2e-16
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Beer production revisited

augment(fit_beer) %>%
ggplot(aes(x = Quarter)) +
geom_line(aes(y = Beer, colour = "Data")) +
geom_line(aes(y = .fitted, colour = "Fitted")) +
labs(y="Megalitres",title ="Australian quarterly beer production") +
scale_colour_manual(values = c(Data = "black", Fitted = "#D55E00"))
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Beer production revisited

augment(fit_beer) %>%
ggplot(aes(x=Beer, y=.fitted, colour=factor(quarter(Quarter)))) +
geom_point() +
labs(y="Fitted", x="Actual values", title = "Quarterly beer production") +
scale_colour_brewer(palette="Dark2", name="Quarter") +
geom_abline(intercept=0, slope=1)
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Beer production revisited

fit_beer %>% gg_tsresiduals()
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Beer production revisited

fit_beer %>% forecast %>% autoplot(recent_production)
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Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

sk(t) = sin
(2πkt

m

)
ck(t) = cos

(2πkt
m

)

yt = a + bt +
K∑
k=1

[αksk(t) + βkck(t)] + εt

Every periodic function can be approximated by sums of sin and
cos terms for large enough K.
Choose K by minimizing AICc.
Called “harmonic regression”

TSLM(y ~ trend() + fourier(K))
24



Harmonic regression: beer production

fourier_beer <- recent_production %>% model(TSLM(Beer ~ trend() + fourier(K=2)))
report(fourier_beer)

## Series: Beer
## Model: TSLM
##
## Residuals:
## Min 1Q Median 3Q Max
## -42.9 -7.6 -0.5 8.0 21.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 446.8792 2.8732 155.53 < 2e-16 ***
## trend() -0.3403 0.0666 -5.11 2.7e-06 ***
## fourier(K = 2)C1_4 8.9108 2.0112 4.43 3.4e-05 ***
## fourier(K = 2)S1_4 -53.7281 2.0112 -26.71 < 2e-16 ***
## fourier(K = 2)C2_4 -13.9896 1.4226 -9.83 9.3e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.2 on 69 degrees of freedom
## Multiple R-squared: 0.924, Adjusted R-squared: 0.92
## F-statistic: 211 on 4 and 69 DF, p-value: <2e-16
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Harmonic regression: eating-out expenditure

aus_cafe <- aus_retail %>% filter(
Industry == "Cafes, restaurants and takeaway food services",
year(Month) %in% 2004:2018

) %>% summarise(Turnover = sum(Turnover))
aus_cafe %>% autoplot(Turnover)
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Harmonic regression: eating-out expenditure

fit <- aus_cafe %>%
model(K1 = TSLM(log(Turnover) ~ trend() + fourier(K = 1)),

K2 = TSLM(log(Turnover) ~ trend() + fourier(K = 2)),
K3 = TSLM(log(Turnover) ~ trend() + fourier(K = 3)),
K4 = TSLM(log(Turnover) ~ trend() + fourier(K = 4)),
K5 = TSLM(log(Turnover) ~ trend() + fourier(K = 5)),
K6 = TSLM(log(Turnover) ~ trend() + fourier(K = 6)))

glance(fit) %>% select(.model, r_squared, adj_r_squared, AICc)

## # A tibble: 6 x 4
## .model r_squared adj_r_squared AICc
## <chr> <dbl> <dbl> <dbl>
## 1 K1 0.962 0.962 -1085.
## 2 K2 0.966 0.965 -1099.
## 3 K3 0.976 0.975 -1160.
## 4 K4 0.980 0.979 -1183.
## 5 K5 0.985 0.984 -1234.
## 6 K6 0.985 0.984 -1232. 27



Harmonic regression: eating-out expenditure

AICc = −1085

2000

3000

4000

5000

2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month

Tu
rn

ov
er level

80

95

Log transformed TSLM, trend() + fourier(K = 1)
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Harmonic regression: eating-out expenditure

AICc = −1099

2000

3000

4000

5000

2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month

Tu
rn

ov
er level

80

95

Log transformed TSLM, trend() + fourier(K = 2)

29



Harmonic regression: eating-out expenditure

AICc = −1160
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Harmonic regression: eating-out expenditure

AICc = −1183
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Harmonic regression: eating-out expenditure

AICc = −1234
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Harmonic regression: eating-out expenditure

AICc = −1232
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Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Steps

Variable takes value 0 before the intervention and 1 afterwards.

Change of slope

Variables take values 0 before the intervention and values
{1, 2, 3, . . . } afterwards.
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Holidays

For monthly data

Christmas: always in December so part of monthly seasonal
effect
Easter: use a dummy variable vt = 1 if any part of Easter is in that
month, vt = 0 otherwise.
Ramadan and Chinese new year similar.

35



Distributed lags

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

x1 = advertising for previous month;
x2 = advertising for two months previously;
...

xm = advertising formmonths previously.

36



Example: Boston marathon winning times

marathon <- boston_marathon %>%
filter(Event == "Men's open division") %>%
select(-Event) %>%
mutate(Minutes = as.numeric(Time)/60)

marathon %>% autoplot(Minutes) + labs(y="Winning times in minutes")
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Example: Boston marathon winning times

fit_trends <- marathon %>%
model(
# Linear trend
linear = TSLM(Minutes ~ trend()),
# Exponential trend
exponential = TSLM(log(Minutes) ~ trend()),
# Piecewise linear trend
piecewise = TSLM(Minutes ~ trend(knots = c(1940, 1980)))

)

fit_trends

## # A mable: 1 x 3
## linear exponential piecewise
## <model> <model> <model>
## 1 <TSLM> <TSLM> <TSLM>
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Example: Boston marathon winning times

fit_trends %>% forecast(h=10) %>% autoplot(marathon)
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Example: Boston marathon winning times

fit_trends %>%
select(piecewise) %>%
gg_tsresiduals()

−10

0

10

20

1900 1925 1950 1975 2000 2025
YearIn

no
va

tio
n 

re
si

du
al

s

−0.2
−0.1

0.0
0.1
0.2
0.3

5 10 15 20
lag [1Y]

ac
f

0

10

20

−10 0 10 20
.resid

co
un

t
40



Outline

1 The linear model with time series

2 Some useful predictors for linear models

3 Residual diagnostics

4 Selecting predictors and forecast evaluation

5 Forecasting with regression

6 Matrix formulation

7 Correlation, causation and forecasting
41



Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

εt are uncorrelated and zero mean
εt are uncorrelated with each xj,t.

It is useful to also have εt ∼ N(0, σ2) when producing prediction
intervals or doing statistical tests.
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Residual plots

Useful for spotting outliers and whether the linear model was
appropriate.

Scatterplot of residuals εt against each predictor xj,t.
Scatterplot residuals against the fitted values ŷt
Expect to see scatterplots resembling a horizontal band with no
values too far from the band and no patterns such as curvature
or increasing spread.
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Residual patterns

If a plot of the residuals vs any predictor in the model shows a
pattern, then the relationship is nonlinear.
If a plot of the residuals vs any predictor not in the model shows
a pattern, then the predictor should be added to the model.
If a plot of the residuals vs fitted values shows a pattern, then
there is heteroscedasticity in the errors. (Could try a
transformation.)
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Comparing regression models

Computer output for regression will always give the R2 value. This is a
useful summary of the model.

It is equal to the square of the correlation between y and ŷ.
It is often called the “coefficient of determination’ ’.
It can also be calculated as follows:

R2 =
∑(ŷt − ȳ)2∑(yt − ȳ)2

It is the proportion of variance accounted for (explained) by the
predictors.
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Comparing regression models

However . . .

R2 does not allow for “degrees of freedom’ ’.
Adding any variable tends to increase the value of R2, even if that
variable is irrelevant.

To overcome this problem, we can use adjusted R2:

R̄2 = 1− (1− R2)
T − 1

T − k− 1
where k = no. predictors and T = no. observations.

Maximizing R̄2 is equivalent to minimizing σ̂2.

σ̂2 =
1

T − k− 1

T∑
t=1
ε2t

47



Comparing regression models

However . . .

R2 does not allow for “degrees of freedom’ ’.
Adding any variable tends to increase the value of R2, even if that
variable is irrelevant.

To overcome this problem, we can use adjusted R2:

R̄2 = 1− (1− R2)
T − 1

T − k− 1
where k = no. predictors and T = no. observations.

Maximizing R̄2 is equivalent to minimizing σ̂2.

σ̂2 =
1

T − k− 1

T∑
t=1
ε2t

47



Comparing regression models

However . . .

R2 does not allow for “degrees of freedom’ ’.
Adding any variable tends to increase the value of R2, even if that
variable is irrelevant.

To overcome this problem, we can use adjusted R2:

R̄2 = 1− (1− R2)
T − 1

T − k− 1
where k = no. predictors and T = no. observations.

Maximizing R̄2 is equivalent to minimizing σ̂2.

σ̂2 =
1

T − k− 1

T∑
t=1
ε2t 47



Akaike’s Information Criterion

AIC = −2 log(L) + 2(k + 2)

where L is the likelihood and k is the number of predictors in the
model.

AIC penalizes terms more heavily than R̄2.
Minimizing the AIC is asymptotically equivalent to minimizing
MSE via leave-one-out cross-validation (for any linear
regression).

48
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Corrected AIC

For small values of T, the AIC tends to select too many predictors, and
so a bias-corrected version of the AIC has been developed.

AICC = AIC +
2(k + 2)(k + 3)
T − k− 3

As with the AIC, the AICC should be minimized.
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Bayesian Information Criterion

BIC = −2 log(L) + (k + 2) log(T)

where L is the likelihood and k is the number of predictors in the
model.

BIC penalizes terms more heavily than AIC
Also called SBIC and SC.
Minimizing BIC is asymptotically equivalent to leave-v-out
cross-validation when v = T[1− 1/(log(T)− 1)].
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Leave-one-out cross-validation

For regression, leave-one-out cross-validation is faster and more
efficient than time-series cross-validation.

Select one observation for test set, and use remaining
observations in training set. Compute error on test observation.
Repeat using each possible observation as the test set.
Compute accuracy measure over all errors.
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Cross-validation

Traditional evaluation
Training dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining data Test dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest data

time

Time series cross-validation
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Choosing regression variables

Best subsets regression

Fit all possible regression models using one or more of the
predictors.
Choose the best model based on one of the measures of
predictive ability (CV, AIC, AICc).

Warning!

If there are a large number of predictors, this is not possible.
For example, 44 predictors leads to 18 trillion possible models!
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Choosing regression variables

Backwards stepwise regression

Start with a model containing all variables.
Try subtracting one variable at a time. Keep the model if it has
lower CV or AICc.
Iterate until no further improvement.

Notes

Stepwise regression is not guaranteed to lead to the best
possible model.
Inference on coefficients of final model will be wrong.
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Outline

1 The linear model with time series

2 Some useful predictors for linear models

3 Residual diagnostics

4 Selecting predictors and forecast evaluation

5 Forecasting with regression

6 Matrix formulation

7 Correlation, causation and forecasting
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Ex-ante versus ex-post forecasts

Ex ante forecasts are made using only information available in
advance.

I require forecasts of predictors

Ex post forecasts are made using later information on the
predictors.

I useful for studying behaviour of forecasting models.

trend, seasonal and calendar variables are all known in advance,
so these don’t need to be forecast.
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Scenario based forecasting

Assumes possible scenarios for the predictor variables
Prediction intervals for scenario based forecasts do not include
the uncertainty associated with the future values of the
predictor variables.
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Building a predictive regression model

If getting forecasts of predictors is difficult, you can use lagged
predictors instead.

yt = β0 + β1x1,t−h + · · · + βkxk,t−h + εt
A different model for each forecast horizon h.
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US Consumption

fit_consBest <- us_change %>%
model(
TSLM(Consumption ~ Income + Savings + Unemployment)

)

future_scenarios <- scenarios(
Increase = new_data(us_change, 4) %>%
mutate(Income=1, Savings=0.5, Unemployment=0),

Decrease = new_data(us_change, 4) %>%
mutate(Income=-1, Savings=-0.5, Unemployment=0),

names_to = "Scenario")

fc <- forecast(fit_consBest, new_data = future_scenarios)
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US Consumption

us_change %>% autoplot(Consumption) +
labs(y="% change in US consumption") +
autolayer(fc) +
labs(title = "US consumption", y = "% change")
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Matrix formulation

yt = β0 + β1x1,t + β2x2,t + · · · + βkxk,t + εt.

Let y = (y1, . . . , yT)′, ε = (ε1, . . . , εT)′, β = (β0, β1, . . . , βk)′ and

X =



1 x1,1 x2,1 . . . xk,1
1 x1,2 x2,2 . . . xk,2
... ... ... ...
1 x1,T x2,T . . . xk,T

 .

Then

y = Xβ + ε.
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Matrix formulation

Least squares estimation

Minimize: (y − Xβ)′(y − Xβ)

Differentiate wrt β gives

β̂ = (X′X)−1X′y

(The “normal equation”.)

σ̂2 =
1

T − k− 1
(y − Xβ̂)′(y − Xβ̂)

Note: If you fall for the dummy variable trap, (X′X) is a singular matrix.
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Matrix formulation

Least squares estimation

Minimize: (y − Xβ)′(y − Xβ)

Differentiate wrt β gives

β̂ = (X′X)−1X′y

(The “normal equation”.)

σ̂2 =
1

T − k− 1
(y − Xβ̂)′(y − Xβ̂)

Note: If you fall for the dummy variable trap, (X′X) is a singular matrix. 64



Likelihood

If the errors are iid and normally distributed, then
y ∼ N(Xβ, σ2I).

So the likelihood is
L =

1
σT(2π)T/2 exp

(
− 1
2σ2

(y − Xβ)′(y − Xβ)
)

which is maximized when (y − Xβ)′(y − Xβ) is minimized.
So MLE = OLS.

65



Likelihood

If the errors are iid and normally distributed, then
y ∼ N(Xβ, σ2I).

So the likelihood is
L =

1
σT(2π)T/2 exp

(
− 1
2σ2

(y − Xβ)′(y − Xβ)
)

which is maximized when (y − Xβ)′(y − Xβ) is minimized.
So MLE = OLS.

65



Likelihood

If the errors are iid and normally distributed, then
y ∼ N(Xβ, σ2I).

So the likelihood is
L =

1
σT(2π)T/2 exp

(
− 1
2σ2

(y − Xβ)′(y − Xβ)
)

which is maximized when (y − Xβ)′(y − Xβ) is minimized.

So MLE = OLS.

65



Likelihood

If the errors are iid and normally distributed, then
y ∼ N(Xβ, σ2I).

So the likelihood is
L =

1
σT(2π)T/2 exp

(
− 1
2σ2

(y − Xβ)′(y − Xβ)
)

which is maximized when (y − Xβ)′(y − Xβ) is minimized.
So MLE = OLS.

65



Multiple regression forecasts

Optimal forecasts
ŷ∗ = E(y∗|y, X, x∗) = x∗β̂ = x∗(X′X)−1X′y

where x∗ is a row vector containing the values of the predictors for
the forecasts (in the same format as X).

Forecast variance
Var(y∗|X, x∗) = σ2

[
1 + x∗(X′X)−1(x∗)′

]

This ignores any errors in x∗.
95% prediction intervals assuming normal errors:

ŷ∗ ± 1.96
√
Var(y∗|X, x∗).
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Correlation is not causation

When x is useful for predicting y, it is not necessarily causing y.
e.g., predict number of drownings y using number of ice-creams
sold x.
Correlations are useful for forecasting, even when there is no
causality.
Better models usually involve causal relationships (e.g.,
temperature x and people z to predict drownings y).
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Multicollinearity

In regression analysis, multicollinearity occurs when:

Two predictors are highly correlated (i.e., the correlation
between them is close to±1).
A linear combination of some of the predictors is highly
correlated with another predictor.
A linear combination of one subset of predictors is highly
correlated with a linear combination of another subset of
predictors.
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Multicollinearity

If multicollinearity exists. . .

the numerical estimates of coefficients may be wrong (worse in
Excel than in a statistics package)
don’t rely on the p-values to determine significance.
there is no problem with model predictions provided the
predictors used for forecasting are within the range used for
fitting.
omitting variables can help.
combining variables can help.
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