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Point forecasts

Rearrange ARIMA equation so y; is on LHS.

Rewrite equation by replacingt by T + h.

On RHS, replace future observations by their forecasts,
future errors by zero, and past errors by corresponding
residuals.

Start with h = 1. Repeatforh=2,3,.. ..



Prediction intervals

95% prediction interval
YrenT £ 1.96, Vrup T

where vr.pr is estimated forecast variance.
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Prediction intervals

95% prediction interval
YrenT £ 1.96, Vrup T

where vr.pr is estimated forecast variance.

W Va7 = o2 for all ARIMA models regardless of parameters
and orders.
m Multi-step prediction intervals for ARIMA(0,0,q):

q
Vi=er+ ) Oiee .

i=1
h—1

vT|T+h=&2[1+Ze,-2], forh=2,3,....
i=1



Prediction intervals

m Prediction intervals increase in size with forecast horizon.
m Prediction intervals can be difficult to calculate by hand
m Calculations assume residuals are uncorrelated and
normally distributed.

m Prediction intervals tend to be too narrow.

» the uncertainty in the parameter estimates has not been

accounted for.
» the ARIMA model assumes historical patterns will not change

during the forecast period.
» the ARIMA model assumes uncorrelated future errors



Seasonal ARIMA models

ARIMA (p,d,q) (P,D,Q)n
N——— N————
T T
Non-seasonal part Seasonal part of
of the model of the model

where m = number of observations per year.
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Seasonal ARIMA models

E.g., ARIMA(1,1,1)(1,1,1), model (without constant)
(1— ¢1B)(1 — ®:B*)(1 — B)(1 — B*)y; = (1+6;,B)(1+0O,B*)ct.

All the factors can be multiplied out and the general model

written as follows:
Ve = (1+ d)e 1 — dye o+ (1+ Dyr s

— (1+ 1+ Dy + )1 D1)Ye_s5 + (91 + )1D1)Yr6
— Dy g+ (D1 + PPV 9 — P1DPYe 10
+ et + 01et_1 + Oqer_4 *+ 01016t _s.



Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in the
seasonal lags of the PACF and ACF.
ARIMA(0,0,0)(0,0,1):> will show:

m a spike at lag 12 in the ACF but no other significant spikes.
m The PACF will show exponential decay in the seasonal
lags; that is, at lags 12, 24, 36, ....

ARIMA(0,0,0)(1,0,0):, will show:

m exponential decay in the seasonal lags of the ACF
m a single significant spike at lag 12 in the PACF. 8



ARIMA vs ETS

m Myth that ARIMA models are more general than exponential
smoothing.

m Linear exponential smoothing models all special cases of
ARIMA models.

m Non-linear exponential smoothing models have no
equivalent ARIMA counterparts.

m Many ARIMA models have no exponential smoothing
counterparts.

m ETS models all non-stationary. Models with seasonality or
non-damped trend (or both) have two unit roots; all other
models have one unit root. 9



ARIMA vs ETS

ETS models ARIMA models

Modelling
autocorrelations

Combination
of components

9 ETS models with

. 6 fully additive
multiplicative errors

Potentially  models
ETS models

3 ETS models with
additive errors and
multiplicative

seasonality

All stationary models
Many large models
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ETS model ARIMA model Parameters
ETS(A,N,N) ARIMA(0,1,1) 0=a—1
ETS(A,A,N)  ARIMA(0,2,2) Or=a+p—2
92 =1—«
ETS(A,Aq,N) ARIMA(1,1,2) P =0
br=a+of—1-19¢
0, = (1— )

ETS(AN,A)  ARIMA(0,0,m)(0,1,0)p,
ETS(A,A,A)  ARIMA(0,1,m +1)(0,1,0),
ETS(A,A4,A)  ARIMA(1,0,m +1)(0,1,0),
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