



# ETC3550/ETC5550 Applied forecasting

Ch9. ARIMA models OTexts.org/fpp3/



- **B** shifts the data back one period.  $By_t = y_{t-1}$
- **B**<sup>2</sup> shifts the data back two periods:  $B(By_t) = B^2y_t = y_{t-2}$
- A difference can be written as  $(1 B)y_t$
- A dth-order difference can be written as  $(1 B)^d y_t$
- A seasonal difference followed by a first difference can be written as  $(1 B)(1 B^m)y_t$

## AR(1) model

$$y_t = c + \phi_1 y_{t-1} + \varepsilon_t$$

- When  $\phi_1 = 0$ ,  $y_t$  is equivalent to WN
- When  $\phi_1 = 1$  and c = 0,  $y_t$  is equivalent to a RW
- When  $\phi_1 = 1$  and  $c \neq 0$ ,  $y_t$  is equivalent to a RW with drift
- When φ<sub>1</sub> < 0, y<sub>t</sub> tends to oscillate between positive and negative values.

A multiple regression with **lagged values** of  $y_t$  as predictors.

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$
  
=  $c + (\phi_1 B + \phi_2 B^2 + \dots + \phi_p B^p) y_t + \varepsilon_t$ 

A multiple regression with **lagged values** of  $y_t$  as predictors.

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$
  
= c + (\phi\_1 B + \phi\_2 B^2 + \dots + \phi\_p B^p) y\_t + \varepsilon\_t

$$(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) y_t = c + \varepsilon_t$$
  
$$\phi(B) y_t = c + \varepsilon_t$$

• 
$$\varepsilon_t$$
 is white noise.  
•  $\phi(B) = (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p)$ 

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

#### General condition for stationarity

Complex roots of  $\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$  lie outside the unit circle on the complex plane.

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

#### General condition for stationarity

Complex roots of  $\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$  lie outside the unit circle on the complex plane.

For 
$$p = 1: -1 < \phi_1 < 1$$
.

For *p* = 2: 
$$-1 < \phi_2 < 1$$
  $\phi_2 + \phi_1 < 1$   $\phi_2 - \phi_1 < 1$ .

More complicated conditions hold for p ≥ 3.
 fable takes care of this.

A multiple regression with **past** errors as predictors.

$$y_{t} = c + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{q}\varepsilon_{t-q}$$
$$= c + (1 + \theta_{1}B + \theta_{2}B^{2} + \dots + \theta_{q}B^{q})\varepsilon_{t}$$
$$= c + \theta(B)\varepsilon_{t}$$

A multiple regression with **past** errors as predictors.

$$y_{t} = c + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{q}\varepsilon_{t-q}$$
$$= c + (1 + \theta_{1}B + \theta_{2}B^{2} + \dots + \theta_{q}B^{q})\varepsilon_{t}$$
$$= c + \theta(B)\varepsilon_{t}$$

•  $\varepsilon_t$  is white noise. •  $\theta(B) = (1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q)$ 

## Invertibility

### General condition for invertibility

Complex roots of  $\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$  lie outside the unit circle on the complex plane.

## Invertibility

#### General condition for invertibility

Complex roots of  $\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$  lie outside the unit circle on the complex plane.

For 
$$q = 1: -1 < \theta_1 < 1$$
.

**For** q = 2:  $-1 < \theta_2 < 1$   $\theta_2 + \theta_1 > -1$   $\theta_1 - \theta_2 < 1$ .

• More complicated conditions hold for  $q \ge 3$ .

fable takes care of this.

### **ARIMA models**

### **ARIMA(**p, d, q**) model:** $\phi(B)(1 - B)^d y_t = c + \theta(B)\varepsilon_t$

- AR: *p* = order of the autoregressive part
  - I: *d* = degree of first differencing involved
- MA: q = order of the moving average part.

### **ARIMA models**

### **ARIMA(**p, d, q**) model:** $\phi(B)(1 - B)^d y_t = c + \theta(B)\varepsilon_t$

- AR: *p* = order of the autoregressive part
  - I: *d* = degree of first differencing involved
- MA: q = order of the moving average part.
  - Conditions on AR coefficients ensure stationarity.
  - Conditions on MA coefficients ensure invertibility.
  - White noise model: ARIMA(0,0,0)
  - Random walk: ARIMA(0,1,0) with no constant
  - Random walk with drift: ARIMA(0,1,0) with const.
  - AR(p): ARIMA(p,0,0)
  - MA(q): ARIMA(0,0,q)

### R model

### Intercept form

$$(1 - \phi_1 B - \cdots - \phi_p B^p) y'_t = c + (1 + \theta_1 B + \cdots + \theta_q B^q) \varepsilon_t$$

#### Mean form

$$(1 - \phi_1 B - \cdots - \phi_p B^p)(y'_t - \mu) = (1 + \theta_1 B + \cdots + \theta_q B^q)\varepsilon_t$$

y<sub>t</sub>' = 
$$(1 - B)^d y_t$$
  
 $\mu$  is the mean of y'<sub>t</sub>.  
 $c = \mu(1 - \phi_1 - \dots - \phi_p)$ .  
fable uses intercept form

## **Understanding ARIMA models**

- If c = 0 and d = 0, the long-term forecasts will go to zero.
- If c = 0 and d = 1, the long-term forecasts will go to a non-zero constant.
- If *c* = 0 and *d* = 2, the long-term forecasts will follow a straight line.
- If  $c \neq 0$  and d = 0, the long-term forecasts will go to the mean of the data.
- If  $c \neq 0$  and d = 1, the long-term forecasts will follow a straight line.
- If  $c \neq 0$  and d = 2, the long-term forecasts will follow a quadratic trend.

## **Understanding ARIMA models**

#### Forecast variance and d

- The higher the value of d, the more rapidly the prediction intervals increase in size.
- For d = 0, the long-term forecast standard deviation will go to the standard deviation of the historical data.

#### **Cyclic behaviour**

- For cyclic forecasts, p ≥ 2 and some restrictions on coefficients are required.
- If p = 2, we need  $\phi_1^2 + 4\phi_2 < 0$ . Then average cycle of length  $(2\pi)/[\operatorname{arc} \cos(-\phi_1(1-\phi_2)/(4\phi_2))]$ .