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Backshift operator notation

B shifts the data back one period. Byt = yt−1

B2 shifts the data back two periods: B(Byt) = B2yt = yt−2

A difference can be written as (1 − B)yt
A dth-order difference can be written as (1 − B)dyt
A seasonal difference followed by a first difference can be
written as (1 − B)(1 − Bm)yt
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AR(1) model

yt = c + ϕ1yt−1 + εt

When ϕ1 = 0, yt is equivalent to WN
When ϕ1 = 1 and c = 0, yt is equivalent to a RW
When ϕ1 = 1 and c ̸= 0, yt is equivalent to a RW with drift
When ϕ1 < 0, yt tends to oscillate between positive and
negative values.
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Autoregressive models

A multiple regression with lagged values of yt as predictors.

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + εt

= c + (ϕ1B + ϕ2B2 + · · · + ϕpBp)yt + εt

(1 − ϕ1B− ϕ2B2 − · · · − ϕpBp)yt = c + εt

ϕ(B)yt = c + εt

εt is white noise.
ϕ(B) = (1 − ϕ1B− ϕ2B2 − · · · − ϕpBp)
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Stationarity conditions

We normally restrict autoregressive models to stationary data,
and then some constraints on the values of the parameters
are required.
General condition for stationarity
Complex roots of ϕ(z) = 1 − ϕ1z− ϕ2z2 − · · · − ϕpzp lie outside
the unit circle on the complex plane.

For p = 1: −1 < ϕ1 < 1.
For p = 2: −1 < ϕ2 < 1 ϕ2 + ϕ1 < 1 ϕ2 − ϕ1 < 1.
More complicated conditions hold for p ≥ 3.
fable takes care of this.
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Moving Average (MA) models

A multiple regression with past errors as predictors.

yt = c + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q

= c + (1 + θ1B + θ2B2 + · · · + θqBq)εt
= c + θ(B)εt

εt is white noise.
θ(B) = (1 + θ1B + θ2B2 + · · · + θqBq)
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Invertibility

General condition for invertibility
Complex roots of θ(z) = 1 + θ1z + θ2z2 + · · · + θqzq lie outside the
unit circle on the complex plane.

For q = 1: −1 < θ1 < 1.
For q = 2: −1 < θ2 < 1 θ2 + θ1 > −1 θ1 − θ2 < 1.
More complicated conditions hold for q ≥ 3.
fable takes care of this.
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ARIMA models

ARIMA(p,d,q) model: ϕ(B)(1 − B)dyt = c + θ(B)εt
AR: p = order of the autoregressive part

I: d = degree of first differencing involved
MA: q = order of the moving average part.

Conditions on AR coefficients ensure stationarity.
Conditions on MA coefficients ensure invertibility.
White noise model: ARIMA(0,0,0)
Random walk: ARIMA(0,1,0) with no constant
Random walk with drift: ARIMA(0,1,0) with const.
AR(p): ARIMA(p,0,0)
MA(q): ARIMA(0,0,q)
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R model

Intercept form
(1 − ϕ1B− · · · − ϕpBp)y′

t = c + (1 + θ1B + · · · + θqBq)εt

Mean form
(1 − ϕ1B− · · · − ϕpBp)(y′

t − µ) = (1 + θ1B + · · · + θqBq)εt

y′
t = (1 − B)dyt

µ is the mean of y′
t.

c = µ(1 − ϕ1 − · · · − ϕp).
fable uses intercept form
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Understanding ARIMA models

If c = 0 and d = 0, the long-term forecasts will go to zero.
If c = 0 and d = 1, the long-term forecasts will go to a non-zero
constant.
If c = 0 and d = 2, the long-term forecasts will follow a straight
line.
If c ̸= 0 and d = 0, the long-term forecasts will go to the mean of
the data.
If c ̸= 0 and d = 1, the long-term forecasts will follow a straight
line.
If c ̸= 0 and d = 2, the long-term forecasts will follow a quadratic
trend.
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Understanding ARIMA models

Forecast variance and d
The higher the value of d, the more rapidly the prediction
intervals increase in size.
For d = 0, the long-term forecast standard deviation will go
to the standard deviation of the historical data.

Cyclic behaviour
For cyclic forecasts, p ≥ 2 and some restrictions on
coefficients are required.
If p = 2, we need ϕ2

1 + 4ϕ2 < 0. Then average cycle of length
(2π)/

[
arc cos(−ϕ1(1 − ϕ2)/(4ϕ2))

]
.
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