

ETC3550/ETC5550 Applied forecasting

Ch8. Exponential smoothing OTexts.org/fpp3/

$\begin{array}{ccc} \textbf{General notation} & \texttt{ETS}: \texttt{ExponenTial Smoothing} \\ \nearrow \uparrow \nwarrow \\ \textbf{Error Trend Season} \end{array}$

Error: Additive ("A") or multiplicative ("M")

General notation ETS: ExponenTial Smoothing ↗ ↑ べ Error Trend Season

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

General notation ETS: ExponenTial Smoothing ↗ ↑ べ Error Trend Season

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

ETS(A,N,N): SES with additive errors

ETS(A,N,N) model	
Observation equation	$y_t = \ell_{t-1} + \varepsilon_t$
State equation	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_t \sim \text{NID}(\mathbf{0}, \sigma^2)$.

- "innovations" or "single source of error" because equations have the same error process, ε_t.
- Measurement equation: relationship between observations and states.
- State equation(s): evolution of the state(s) through time.

ETS(A,A,N)

Holt's methods method with additive errors.

Forecast equation $\hat{y}_{t+h|t} = \ell_t + hb_t$ Observation equation $y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$ State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$ $b_t = b_{t-1} + \beta \varepsilon_t$

Forecast errors: $\varepsilon_t = y_t - \hat{y}_{t|t-1}$

ETS(A,A,A)

Holt-Winters additive method with additive errors.

Ŷ

Forecast equation Observation equation State equations

$$\begin{aligned} y_{t+h|t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \\ y_t &= \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \beta \varepsilon_t \\ s_t &= s_{t-m} + \gamma \varepsilon_t \end{aligned}$$

Forecast errors: $\varepsilon_t = y_t - \hat{y}_{t|t-1}$ *k* is integer part of (h - 1)/m.

ETS(M,A,M)

Holt-Winters multiplicative method with multiplicative errors.

Forecast equation Observation equation State equations

$$\begin{aligned} y_{t+h|t} &= (\ell_t + hb_t)s_{t+h-m(k+1)} \\ y_t &= (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + b_{t-1})(1 + \alpha\varepsilon_t) \\ b_t &= b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t \\ s_t &= s_{t-m}(1 + \gamma\varepsilon_t) \end{aligned}$$

Forecast errors:
$$\varepsilon_t = (y_t - \hat{y}_{t|t-1})/\hat{y}_{t|t-1}$$

 k is integer part of $(h - 1)/m$.

ETS(y ~ error("A") + trend("N") + season("N"))

By default, optimal values for α , β , γ , and the states at time 0 are used.

The values for α , β and γ can be specified:

```
trend("A", alpha = 0.5, beta = 0.2)
trend("A", alpha_range = c(0.2, 0.8), beta_range = c(0.1, 0.4))
season("M", gamma = 0.04)
season("M", gamma_range = c(0, 0.3))
```

Exponential smoothing methods

		Seasonal Component			
	Trend	N	А	Μ	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	(N,N)	(N,A)	(N,M)	
А	(Additive)	(A,N)	(A,A)	(A,M)	
A_d	(Additive damped)	(A _d ,N)	(A _d ,A)	(A _d ,M)	

- (N,N): Simple exponential smoothing
- (A,N): Holt's linear method
- (A_d,N): Additive damped trend method
- (A,A): Additive Holt-Winters' method
- (A,M): Multiplicative Holt-Winters' method
- (A_d,M): Damped multiplicative Holt-Winters' method

Exponential smoothing methods

		Seasonal Component			
	Trend	N	А	Μ	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	(N,N)	(N,A)	(N,M)	
А	(Additive)	(A,N)	(A,A)	(A,M)	
A_d	(Additive damped)	(A _d ,N)	(A _d ,A)	(A _d ,M)	

- (N,N): Simple exponential smoothing
- (A,N): Holt's linear method
- (A_d,N): Additive damped trend method
- (A,A): Additive Holt-Winters' method
- (A,M): Multiplicative Holt-Winters' method
- (A_d,M): Damped multiplicative Holt-Winters'

There are also multiplicative trend methods (not recommended).

Additive Error		Seasonal Component		
Trend		Ν	А	Μ
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	A,N,N	A,N,A	A,N,M
А	(Additive)	A,A,N	A,A,A	A,A,M
A_d	(Additive damped)	A,A _d ,N	A,A _d ,A	A,A _d ,M

Multiplicative Error		Seasonal Component		
Trend		N	А	М
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	M,N,N	M,N,A	M,N,M
А	(Additive)	M,A,N	M,A,A	M,A,M
A_d	(Additive damped)	M,A _d ,N	M,A _d ,A	M,A _d ,M

Additive Error		Seasonal Component		
Trend		Ν	А	Μ
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	A,N,N	A,N,A	<u>A, N, M</u>
А	(Additive)	A,A,N	A,A,A	<u>^_^_A</u>
A_d	(Additive damped)	A,A _d ,N	A,A _d ,A	<mark>△,△_d,</mark> ∆ſ

Multiplicative Error		Seasonal Component		
Trend		N	А	Μ
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	M,N,N	M,N,A	M,N,M
А	(Additive)	M,A,N	M,A,A	M,A,M
A_d	(Additive damped)	M,A _d ,N	M,A _d ,A	M,A _d ,M

Minimizing the AIC assuming Gaussian residuals is asymptotically equivalent to minimizing one-step time series cross validation MSE.

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AICc:
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.

Method performed very well in M3 competition.

Residuals

Response residuals

$$\hat{e}_t$$
 = $y_t - \hat{y}_{t|t-1}$

Innovation residuals

Additive error model:

$$\widehat{arepsilon}_t$$
 = $y_t - \widehat{y}_{t|t-1}$

Multiplicative error model:

$$\widehat{\varepsilon}_t = \frac{y_t - \widehat{y}_{t|t-1}}{\widehat{y}_{t|t-1}}$$