

ETC3550/ETC5550 Applied forecasting

Ch8. Simple Exponential smoothing OTexts.org/fpp3/

Historical perspective

- Developed in the 1950s and 1960s as methods (algorithms) to produce point forecasts.
- Combine a "level", "trend" (slope) and "seasonal" component to describe a time series.
- The rate of change of the components are controlled by "smoothing parameters": α, β and γ respectively.
- Need to choose best values for the smoothing parameters (and initial states).
- Equivalent ETS state space models developed in the 1990s and 2000s.

Big idea: control the rate of change

 α controls the flexibility of the ${\bf level}$

If
$$\alpha$$
 = 0, the level never updates (mean)
If α = 1, the level updates completely (naive)

β controls the flexibility of the **trend**

- If β = 0, the trend is linear
- If β = 1, the trend changes suddenly every observation

 γ controls the flexibility of the **seasonality**

If γ = 0, the seasonality is fixed (seasonal means)
If γ = 1, the seasonality updates completely (seasonal naive)

Models and methods

Methods

Algorithms that return point forecasts.

Models

- Generate same point forecasts but can also generate forecast distributions.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection.

Iterative form

$$\hat{\pmb{y}}_{t+1|t}$$
 = $lpha \pmb{y}_t$ + (1 – $lpha) \hat{\pmb{y}}_{t|t-1}$

Iterative form

$$\hat{\pmb{y}}_{t+1|t}$$
 = $lpha \pmb{y}_t$ + (1 – $lpha) \hat{\pmb{y}}_{t|t-1}$

Weighted average form

$$\hat{\mathbf{y}}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j \mathbf{y}_{T-j} + (1-\alpha)^T \ell_0$$

Iterative form

$$\hat{\pmb{y}}_{t+1|t}$$
 = $lpha \pmb{y}_t$ + (1 – $lpha) \hat{\pmb{y}}_{t|t-1}$

Weighted average form

$$\hat{\boldsymbol{y}}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j \boldsymbol{y}_{T-j} + (1-\alpha)^T \ell_0$$

Component form

Forecast equation Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Component form

Forecast equation Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

 $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Component formForecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Component form

Forecast equation Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Forecast error:
$$e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$$
.

Error correction form

$$y_{t} = \ell_{t-1} + e_{t}$$

$$\ell_{t} = \ell_{t-1} + \alpha(y_{t} - \ell_{t-1})$$

$$= \ell_{t-1} + \alpha e_{t}$$

Component form

Forecast equation Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Forecast error:
$$e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$$
.

Error correction form

$$y_{t} = \ell_{t-1} + e_{t}$$

$$\ell_{t} = \ell_{t-1} + \alpha(y_{t} - \ell_{t-1})$$

$$= \ell_{t-1} + \alpha e_{t}$$

Specify probability distribution: $e_t = \varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,N,N): SES with additive errors

where $\varepsilon_t \sim \text{NID}(\mathbf{0}, \sigma^2)$.

- "innovations" or "single source of error" because equations have the same error process, ε_t.
- Observation equation: relationship between observations and states.

State equation(s): evolution of the state(s) through time.

ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:
 - $y_t = \ell_{t-1} + \ell_{t-1}\varepsilon_t$

•
$$e_t = y_t - \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$$

ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:
 - $y_t = \ell_{t-1} + \ell_{t-1}\varepsilon_t$
 - $e_t = y_t \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$

ETS(M,N,N) model

Observation equation State equation

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$
$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$$

ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:
 - $y_t = \ell_{t-1} + \ell_{t-1}\varepsilon_t$
 - $e_t = y_t \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$

ETS(M,N,N) model

Observation equation	
State equation	

- $y_t = \ell_{t-1}(1 + \varepsilon_t)$ $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$
- Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.