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Multiple regression and forecasting

Vi = Bo+ BiXat + BaXo + -+ BrXpt * €t

m y; is the variable we want to predict: the “response”
variable

m Each x;; is numerical and is called a “predictor”. They are
usually assumed to be known for all past and future times.

m The coefficients /1, ..., 3, measure the effect of each

predictor after taking account of the effect of all other
predictors in the model.

®m < is a white noise error term
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Linear trend
Xt = t, t=12,...,

Piecewise linear trend with bend at
Xt = t

X = 0 t<rt
2t (t—7) t>71

Quadratic or higher order trend
Xt = t, Xot = tz, ..
NOT RECOMMENDED! 3
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m For monthly data: use 11 dummies
m For daily data: use 6 dummies
m What to do with weekly data?
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Uses of dummy variables

Seasonal dummies

m For quarterly data: use 3 dummies
m For monthly data: use 11 dummies
m For daily data: use 6 dummies
m What to do with weekly data?

Outliers
m A dummy variable can remove its effect.
Public holidays

m For daily data: if it is a public holiday, dummy=1, otherwise
dummy=0.



For monthly data

m Christmas: always in December so part of monthly
seasonal effect

m Easter: use a dummy variable v; = 1if any part of Easter is
in that month, v; = 0 otherwise.

m Ramadan and Chinese New Year similar.



Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:
. [2mkt 27kt
sp(t) = sin (T) cx(t) = cos (T)

K

ye=a+bt+ kZ |kSk(t) *+ Brer(t)] + &
-1

m Every periodic function can be approximated by sums of
sin and cos terms for large enough K.

m Choose K by minimizing AlCc or CV.

m Called “harmonic regression” 6



Distributed lags

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

X, = advertising for previous month;
X, = advertising for two months previously;

Xm = advertising for m months previously.



Comparing regression models

m R? does not allow for “degrees of freedom”.
m Adding any variable tends to increase the value of R?, even if
that variable is irrelevant.
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Comparing regression models

m R? does not allow for “degrees of freedom”.
m Adding any variable tends to increase the value of R?, even if
that variable is irrelevant.

To overcome this problem, we can use adjusted R?:
T—1

T—kR—-1

where Rk = no. predictors and T = no. observations.

R?=1-(1-R?)

Maximizing R? is equivalent to minimizing 52.
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Akaike’s Information Criterion

AIC = —2log(L) + 2(k + 2)
m L = likelihood

m k = # predictors in model.
m AIC penalizes terms more heavily than R2.



Akaike’s Information Criterion

AIC = —2log(L) + 2(k + 2)

m L = likelihood
m k = # predictors in model.
m AIC penalizes terms more heavily than R2.

- 2(R+2)(k+3)
AICc = AIC + Ak2)k:3)

m Minimizing the AIC or AlCc is asymptotically equivalent to
minimizing MSE via leave-one-out cross-validation (for
any linear regression).



Leave-one-out cross-validation

For regression, leave-one-out cross-validation is faster and
more efficient than time-series cross-validation.

m Select one observation for test set, and use remaining
observations in training set. Compute error on test
observation.

m Repeat using each possible observation as the test set.

m Compute accuracy measure over all errors.

10



Cross-validation

Traditional evaluation
Training data Test data

time
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Cross-validation

Traditional evaluation
Training data Test data

time
Time series cross-validation
h=1

—e e — — — — — — — — —
—e o o+ o»— — — — — — — — — —
—e o o o o o»— — — — — — — — — — —
—e 9o e 9o o ¢ o — — — — — — — — —
—e 9o e 9o o o o o»— — — — — — — — — — — —
—eo 9o e 9o o o o o o — — — — — — — — — —
—eo 9o e 9o o o o o o o — — — — — — — — — — — —
—e 9o e 9o o o o o o o o — — — — — — — — — — —
—eo 9o e 9o o o o o o o o o — — — — — — — — — — — —
—eo 9o e 9o o o o o o o o o o — — — — — — — — — — — —



Cross-validation

Traditional evaluation
Training data Test data

time

Leave-one-out cross-validation
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Cross-validation

Traditional evaluation
Training data Test data

time

Leave-one-out cross-validation
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Bayesian Information Criterion

BIC = —2log(L) + (k + 2) log(T)

where L is the likelihood and k is the number of predictors in
the model.
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Bayesian Information Criterion

BIC = —2log(L) + (k + 2) log(T)

where L is the likelihood and k is the number of predictors in
the model.

m BIC penalizes terms more heavily than AIC

m Also called SBIC and SC.

m Minimizing BIC is asymptotically equivalent to leave-v-out
cross-validation when v = T[1 — 1/(log(T) — 1)].
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Choosing regression variables

Best subsets regression

m Fit all possible regression models using one or more of the
predictors.

m Choose the best model based on one of the measures of
predictive ability (CV, AIC, AICc).
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Choosing regression variables

Best subsets regression

m Fit all possible regression models using one or more of the
predictors.

m Choose the best model based on one of the measures of
predictive ability (CV, AIC, AICc).

Backwards stepwise regression

m Start with a model containing all variables.

m Subtract one variable at a time. Keep model if lower CV.

m lterate until no further improvement.

m Not guaranteed to lead to best model. 1



Ex-ante versus ex-post forecasts

m Ex ante forecasts are made using only information

available in advance.
» require forecasts of predictors

m Ex post forecasts are made using later information on the

predictors.
» useful for studying behaviour of forecasting models.

m trend, seasonal and calendar variables are all known in
advance, so these don’t need to be forecast.
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