

ETC3550/ETC5550 Applied forecasting

Ch7. Regression models OTexts.org/fpp3/

Multiple regression and forecasting

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t.$$

- y_t is the variable we want to predict: the "response" variable
- Each x_{j,t} is numerical and is called a "predictor". They are usually assumed to be known for all past and future times.
- The coefficients β_1, \ldots, β_k measure the effect of each predictor after taking account of the effect of all other predictors in the model.
- \bullet ε_t is a white noise error term

$$x_t = t, \qquad t = 1, 2, \ldots,$$

$$x_t = t, \qquad t = 1, 2, \ldots,$$

Piecewise linear trend with bend at au

$$egin{aligned} \mathbf{x}_{1,t} &= \mathbf{t} \ \mathbf{x}_{2,t} &= \left\{ egin{aligned} \mathbf{0} & \mathbf{t} < au \ (\mathbf{t} - au) & \mathbf{t} \geq au \end{aligned}
ight.$$

$$x_t = t, t = 1, 2, \ldots,$$

Piecewise linear trend with bend at au

$$egin{aligned} \mathbf{x}_{1,t} &= \mathbf{t} \ \mathbf{x}_{2,t} &= \left\{ egin{aligned} \mathbf{0} & \mathbf{t} < au \ (\mathbf{t} - au) & \mathbf{t} \geq au \end{aligned}
ight.$$

Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

$$x_t = t, t = 1, 2, \ldots,$$

Piecewise linear trend with bend at au

$$egin{aligned} \mathbf{x}_{1,t} &= \mathbf{t} \ \mathbf{x}_{2,t} &= \left\{ egin{aligned} \mathbf{0} & \mathbf{t} < au \ (\mathbf{t} - au) & \mathbf{t} \geq au \end{aligned}
ight.$$

Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

NOT RECOMMENDED!

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

A dummy variable can remove its effect.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

A dummy variable can remove its effect.

Public holidays

For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.

For monthly data

- Christmas: always in December so part of monthly seasonal effect
- Easter: use a dummy variable $v_t = 1$ if any part of Easter is in that month, $v_t = 0$ otherwise.
- Ramadan and Chinese New Year similar.

Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

$$s_k(t) = \sin\left(\frac{2\pi kt}{m}\right)$$
 $c_k(t) = \cos\left(\frac{2\pi kt}{m}\right)$

$$y_t = a + bt + \sum_{k=1}^{K} \left[\alpha_k s_k(t) + \beta_k c_k(t) \right] + \varepsilon_t$$

- Every periodic function can be approximated by sums of sin and cos terms for large enough K.
- Choose *K* by minimizing AICc or CV.
- Called "harmonic regression"

Distributed lags

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

x₁ = advertising for previous month;
x₂ = advertising for two months previously;
:
x_m = advertising for m months previously.

Comparing regression models

R² does not allow for "degrees of freedom".
 Adding *any* variable tends to increase the value of R², even if that variable is irrelevant.

Comparing regression models

R² does not allow for "degrees of freedom".
 Adding *any* variable tends to increase the value of R², even if that variable is irrelevant.

To overcome this problem, we can use *adjusted* R^2 :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where *k* = no. predictors and *T* = no. observations.

Comparing regression models

R² does not allow for "degrees of freedom".
 Adding *any* variable tends to increase the value of R², even if that variable is irrelevant.

To overcome this problem, we can use *adjusted* R^2 :

$$ar{R}^2$$
 = 1 – (1 – R^2) $rac{T-1}{T-k-1}$

where *k* = no. predictors and *T* = no. observations.

Maximizing \bar{R}^2 is equivalent to minimizing $\hat{\sigma}^2$.

$$\hat{\sigma}^2 = \frac{1}{T-k-1} \sum_{t=1}^{T} \varepsilon_t^2$$

Akaike's Information Criterion

$$AIC = -2\log(L) + 2(k+2)$$

- L = likelihood
- k = # predictors in model.
- AIC penalizes terms more heavily than \overline{R}^2 .

Akaike's Information Criterion

$$AIC = -2 \log(L) + 2(k + 2)$$

- L = likelihood
- k = # predictors in model.
- AIC penalizes terms more heavily than \overline{R}^2 .

$$AIC_{C} = AIC + \frac{2(k+2)(k+3)}{T-k-3}$$

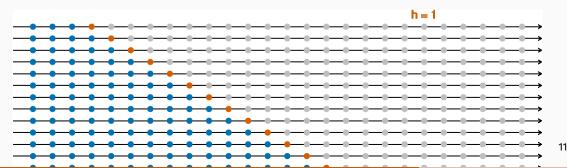
Minimizing the AIC or AICc is asymptotically equivalent to minimizing MSE via leave-one-out cross-validation (for any linear regression). For regression, leave-one-out cross-validation is faster and more efficient than time-series cross-validation.

- Select one observation for test set, and use *remaining* observations in training set. Compute error on test observation.
- Repeat using each possible observation as the test set.
- Compute accuracy measure over all errors.

Traditional evaluation

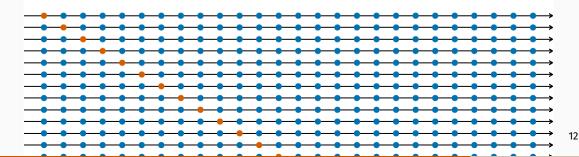
Traditional evaluation

Time series cross-validation



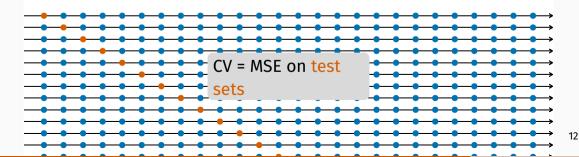
Traditional evaluation

Leave-one-out cross-validation



Traditional evaluation

Leave-one-out cross-validation



Bayesian Information Criterion

$$BIC = -2\log(L) + (k+2)\log(T)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

Bayesian Information Criterion

$$BIC = -2\log(L) + (k+2)\log(T)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

- BIC penalizes terms more heavily than AIC
- Also called SBIC and SC.
- Minimizing BIC is asymptotically equivalent to leave-v-out cross-validation when v = T[1 1/(log(T) 1)].

Choosing regression variables

Best subsets regression

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

Choosing regression variables

Best subsets regression

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

Backwards stepwise regression

- Start with a model containing all variables.
- Subtract one variable at a time. Keep model if lower CV.
- Iterate until no further improvement.
- Not guaranteed to lead to best model.

Ex-ante versus ex-post forecasts

- *Ex ante forecasts* are made using only information available in advance.
 - require forecasts of predictors
- Ex post forecasts are made using later information on the predictors.
 - useful for studying behaviour of forecasting models.
- trend, seasonal and calendar variables are all known in advance, so these don't need to be forecast.