Downloading Stock data using tidyquant

Author

Prof. Eric A. Suess

Published

February 24, 2025

Read the blog post Charting with tidyquant.

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)  
Registered S3 method overwritten by 'quantmod':
  method            from
  as.zoo.data.frame zoo 
── Attaching core tidyquant packages ─────────────────────── tidyquant 1.0.10 ──
✔ PerformanceAnalytics 2.0.8      ✔ TTR                  0.24.4
✔ quantmod             0.4.26     ✔ xts                  0.14.1── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
✖ zoo::as.Date()                 masks base::as.Date()
✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
✖ dplyr::filter()                masks stats::filter()
✖ xts::first()                   masks dplyr::first()
✖ dplyr::lag()                   masks stats::lag()
✖ xts::last()                    masks dplyr::last()
✖ PerformanceAnalytics::legend() masks graphics::legend()
✖ quantmod::summary()            masks base::summary()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

This is a test dataset that is available in the tidyquant R package.

data("FANG") 
FANG

Download stock data.

AAPL <- tq_get("AAPL", get = "stock.prices", from = "2015-09-01", to = "2016-12-31")
AMZN <- tq_get("AMZN", get = "stock.prices", from = "2000-01-01", to = "2016-12-31")
META <- tq_get("META", get = "stock.prices", from = "2015-09-01", to = "2016-12-31")
GOOGL <- tq_get("GOOGL", get = "stock.prices", from = "2015-09-01", to = "2016-12-31")
AAPL %>%
    ggplot(aes(x = date, y = close)) +
    geom_line() +
    labs(title = "AAPL Line Chart", y = "Closing Price", x = "") + 
    theme_tq()

AAPL %>%
    ggplot(aes(x = date, y = close)) +
    geom_barchart(aes(open = open, high = high, low = low, close = close)) +
    labs(title = "AAPL Bar Chart", y = "Closing Price", x = "") + 
    theme_tq()

AMZN %>%
    ggplot(aes(x = date, y = close)) +
    geom_line() +
    labs(title = "AMZN Line Chart", y = "Closing Price", x = "") + 
    theme_tq()

META %>%
    ggplot(aes(x = date, y = close)) +
    geom_line() +
    labs(title = "META Line Chart", y = "Closing Price", x = "") + 
    theme_tq()

GOOGL %>%
    ggplot(aes(x = date, y = close)) +
    geom_line() +
    labs(title = "GOOGL Line Chart", y = "Closing Price", x = "") + 
    theme_tq()

Current

GOOGL <- tq_get("GOOGL", get = "stock.prices", from = "2015-09-01", to = "2023-2-17")
GOOGL %>%
    ggplot(aes(x = date, y = close)) +
    geom_line() +
    labs(title = "GOOGL Line Chart", y = "Closing Price", x = "") + 
    theme_tq()

MSFT <- tq_get("MSFT", get = "stock.prices", from = "2015-09-01", to = "2023-2-17")
MSFT %>%
    ggplot(aes(x = date, y = close)) +
    geom_line() +
    labs(title = "MSFT Line Chart", y = "Closing Price", x = "") + 
    theme_tq()