── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
✔ ggplot2 3.3.6 ✔ purrr 0.3.4
✔ tibble 3.1.7 ✔ dplyr 1.0.9
✔ tidyr 1.2.0 ✔ stringr 1.4.0
✔ readr 2.1.2 ✔ forcats 0.5.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
── Attaching packages ──────────────────────────────────────────── fpp3 0.4.0 ──
✔ lubridate 1.8.0 ✔ feasts 0.2.2
✔ tsibble 1.1.1 ✔ fable 0.3.1
✔ tsibbledata 0.4.0
── Conflicts ───────────────────────────────────────────────── fpp3_conflicts ──
✖ lubridate::date() masks base::date()
✖ dplyr::filter() masks stats::filter()
✖ tsibble::intersect() masks base::intersect()
✖ tsibble::interval() masks lubridate::interval()
✖ dplyr::lag() masks stats::lag()
✖ tsibble::setdiff() masks base::setdiff()
✖ tsibble::union() masks base::union()
White noise
Random normal with mean 0 and variance 1.
set.seed(30)
y <- tsibble(
sample = 1:50,
wn = rnorm(50),
index = sample)
y
# A tsibble: 50 x 2 [1]
sample wn
<int> <dbl>
1 1 -1.29
2 2 -0.348
3 3 -0.522
4 4 1.27
5 5 1.82
6 6 -1.51
7 7 0.111
8 8 -0.761
9 9 -0.670
10 10 0.275
# … with 40 more rows
y %>% autoplot(wn) + labs(title = "White noise")
Moving average model.
yt = wn + phi * lag(wn)
phi1 <- -0.9
phi2 <- 0.9
y_ma <- y %>% mutate(wn_lag = lag(wn),
yt_ma1 = wn + phi1*wn_lag,
yt_ma2 = wn + phi2*wn_lag)
y_ma
# A tsibble: 50 x 5 [1]
sample wn wn_lag yt_ma1 yt_ma2
<int> <dbl> <dbl> <dbl> <dbl>
1 1 -1.29 NA NA NA
2 2 -0.348 -1.29 0.812 -1.51
3 3 -0.522 -0.348 -0.209 -0.835
4 4 1.27 -0.522 1.74 0.804
5 5 1.82 1.27 0.678 2.97
6 6 -1.51 1.82 -3.15 0.131
7 7 0.111 -1.51 1.47 -1.25
8 8 -0.761 0.111 -0.860 -0.661
9 9 -0.670 -0.761 0.0148 -1.35
10 10 0.275 -0.670 0.877 -0.328
# … with 40 more rows
y_ma %>% autoplot(yt_ma1)
Warning: Removed 1 row(s) containing missing values (geom_path).
y_ma %>% autoplot(yt_ma2)
Warning: Removed 1 row(s) containing missing values (geom_path).
y_ma %>% ACF(wn) %>% autoplot()
y_ma %>% ACF(yt_ma1) %>% autoplot()
y_ma %>% ACF(yt_ma2) %>% autoplot()