Thank you

A big thank you to Leon Jessen for posting his code on github.

Building a simple neural network using Keras and Tensorflow

I have forked his project on github and put his code into an R Notebook so we can run it in class.

Motivation

The following is a minimal example for building your first simple artificial neural network using Keras and TensorFlow for R.

TensorFlow for R by Rstudio lives here.

Gettings started - Install Keras and TensorFlow for R

You can install the Keras for R package from CRAN as follows:

# install.packages("keras")

TensorFlow is the default backend engine. TensorFlow and Keras can be installed as follows:

# library(keras)
# install_keras()

Naturally, we will also need Tidyverse:

# Install from CRAN
# install.packages("tidyverse")

# Or the development version from GitHub
# install.packages("devtools")
# devtools::install_github("hadley/tidyverse")

Once installed, we simply load the libraries

```r
library(\keras\)
suppressMessages(library(\tidyverse\))

<!-- rnb-source-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->


Artificial Neural Network Using the Iris Data Set
-------------------------------------------------

Right, let's get to it!

### Data

The famous (Fisher's or Anderson's) `iris` data set contains a total of 150 observations of 4 input features `Sepal.Length`, `Sepal.Width`, `Petal.Length` and `Petal.Width` and 3 output classes `setosa` `versicolor` and `virginica`, with 50 observations in each class. The distributions of the feature values looks like so:


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuaXJpcyAlPiUgYXNfdGliYmxlICU+JSBnYXRoZXIoZmVhdHVyZSwgdmFsdWUsIC1TcGVjaWVzKSAlPiVcbiAgZ2dwbG90KGFlcyh4ID0gZmVhdHVyZSwgeSA9IHZhbHVlLCBmaWxsID0gU3BlY2llcykpICtcbiAgZ2VvbV92aW9saW4oYWxwaGEgPSAwLjUsIHNjYWxlID0gXFx3aWR0aFxcKSArXG4gIHRoZW1lX2J3KClcbmBgYFxuYGBgIn0= -->

```r
```r
iris %>% as_tibble %>% gather(feature, value, -Species) %>%
  ggplot(aes(x = feature, y = value, fill = Species)) +
  geom_violin(alpha = 0.5, scale = \width\) +
  theme_bw()

<!-- rnb-source-end -->

<!-- rnb-plot-begin -->

<img src="" />

<!-- rnb-plot-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->


Our aim is to connect the 4 input features to the correct output class using an artificial neural network. For this task, we have chosen the following simple architecture with one input layer with 4 neurons (one for each feature), one hidden layer with 4 neurons and one output layer with 3 neurons (one for each class), all fully connected:

![architecture_visualisation.png](./img/architecture_visualisation.png)

Our artificial neural network will have a total of 35 parameters: 4 for each input neuron connected to the hidden layer, plus an additional 4 for the associated first bias neuron and 3 for each of the hidden neurons connected to the output layer, plus an additional 3 for the associated second bias neuron. I.e. $4 \times 4+4+4 \ times 3+3=35$

### Prepare data

We start with slightly wrangling the iris data set by renaming and scaling the features and converting character labels to numeric:


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuc2V0LnNlZWQoMjY1NTA5KVxubm5fZGF0IDwtIGlyaXMgJT4lIGFzX3RpYmJsZSAlPiVcbiAgbXV0YXRlKHNlcGFsX2xlbmd0aCA9IHNjYWxlKFNlcGFsLkxlbmd0aCksXG4gICAgICAgICBzZXBhbF93aWR0aCAgPSBzY2FsZShTZXBhbC5XaWR0aCksXG4gICAgICAgICBwZXRhbF9sZW5ndGggPSBzY2FsZShQZXRhbC5MZW5ndGgpLFxuICAgICAgICAgcGV0YWxfd2lkdGggID0gc2NhbGUoUGV0YWwuV2lkdGgpLCAgICAgICAgICBcbiAgICAgICAgIGNsYXNzX2xhYmVsICA9IGFzLm51bWVyaWMoU3BlY2llcykgLSAxKSAlPiUgXG4gICAgc2VsZWN0KHNlcGFsX2xlbmd0aCwgc2VwYWxfd2lkdGgsIHBldGFsX2xlbmd0aCwgcGV0YWxfd2lkdGgsIGNsYXNzX2xhYmVsKVxuXG5ubl9kYXQgJT4lIGhlYWQoMylcbmBgYFxuYGBgIn0= -->

```r
```r
set.seed(265509)
nn_dat <- iris %>% as_tibble %>%
  mutate(sepal_length = scale(Sepal.Length),
         sepal_width  = scale(Sepal.Width),
         petal_length = scale(Petal.Length),
         petal_width  = scale(Petal.Width),          
         class_label  = as.numeric(Species) - 1) %>% 
    select(sepal_length, sepal_width, petal_length, petal_width, class_label)

nn_dat %>% head(3)

<!-- rnb-source-end -->

<!-- rnb-frame-begin eyJtZXRhZGF0YSI6eyJjbGFzc2VzIjpbInRibF9kZiIsInRibCIsImRhdGEuZnJhbWUiXSwibnJvdyI6MywibmNvbCI6NSwic3VtbWFyeSI6eyJBIHRpYmJsZSI6IjMgeCA1In19LCJyZGYiOiJINHNJQUFBQUFBQUFBd3R5aVREbWl1QmlZR0JnWm1CbUEySldJSk9CTlRURVRkZUNnWUdGQ2NoaFpHQmg0QVRSRlVCRndpQlpCZ1ltUHBDTy9XOTI3cHRrL01WaC95Y3JMVTlIR2RuOTM4UkxQVFBzNU5BMDhoWW5KK2FrcGxnbHArYVZwQllCQlVDYUdSM0U0eWNkL2FtVGdLYVlCNm9ZVE1IVTJyK3FiK2tNZXR5RXBwWTVKVE1YWkQ0UU00RjlBSkppWVBnSGM1LzlCL3ZuOTJzZk51dy9jTTI1L1V1dm1QMlZUMGVWamUwYUljWXcvWWM3aGFNMFczZXZwQk5FbkJrdWJuLzdxZlhtYzdlRElPSXMvL0hadGY5cnZLMDBWMmdIblA3bTdsSVpGcm9Cd3k0K2dTVGZTeDlYWWRqMXgyNWxqTVhrREtMcyt2Skw4S0tkODB0MEd0MHUrODhHRldwV1c2ZGoyUFVpeGNHaDdzWkovSGFCMVlMNE9BQktWTERtSmVhbUZnTVpBdUFFQW92TDFJTEVuUGljMUx6MGtneW9HRGRFckR3ekJTN0VVNUJhZ3FFTUlvYXNqRHM1SjdHNE9ENG5NU2sxQjgxMnpxTDhjajJZQzhCZWFRQVMvLy8vLzR2dVRMQVpVR2ZDQkxsU0Vrc1M5ZEtLZ1BvaFBrZlJ3cDVmVUpLWm53ZlV4QVJOL0NpYUdZdlFCUGhMODBBdVNkRk56aWpOeTlZMUJWa0FEVlFHcU9zWW9RRUxZN05DckdUOWp4WitiTUFReWN4TGhia2Q0bk1JaHcvb1k3Q0g5UXFLTXZOS1lENEJpaGJybGVRRGd3NG1rcHlmQXhPQnhPby9BTzhLY2piekF3QUEifQ== -->

<div data-pagedtable="false">
  <script data-pagedtable-source type="application/json">
{"columns":[{"label":["sepal_length"],"name":[1],"type":["dbl"],"align":["right"]},{"label":["sepal_width"],"name":[2],"type":["dbl"],"align":["right"]},{"label":["petal_length"],"name":[3],"type":["dbl"],"align":["right"]},{"label":["petal_width"],"name":[4],"type":["dbl"],"align":["right"]},{"label":["class_label"],"name":[5],"type":["dbl"],"align":["right"]}],"data":[{"1":"-0.8976739","2":"1.0156020","3":"-1.335752","4":"-1.311052","5":"0"},{"1":"-1.1392005","2":"-0.1315388","3":"-1.335752","4":"-1.311052","5":"0"},{"1":"-1.3807271","2":"0.3273175","3":"-1.392399","4":"-1.311052","5":"0"}],"options":{"columns":{"min":{},"max":[10],"total":[5]},"rows":{"min":[10],"max":[10],"total":[3]},"pages":{}}}
  </script>
</div>

<!-- rnb-frame-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->


Then, we create indices for splitting the iris data into a training and a test data set. We set aside 20% of the data for testing:


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxudGVzdF9mcmFjdGlvbiAgIDwtIDAuMjBcbm5fdG90YWxfc2FtcGxlcyA8LSBucm93KG5uX2RhdClcbm5fdHJhaW5fc2FtcGxlcyA8LSBjZWlsaW5nKCgxIC0gdGVzdF9mcmFjdGlvbikgKiBuX3RvdGFsX3NhbXBsZXMpXG50cmFpbl9pbmRpY2VzICAgPC0gc2FtcGxlKG5fdG90YWxfc2FtcGxlcywgbl90cmFpbl9zYW1wbGVzKVxubl90ZXN0X3NhbXBsZXMgIDwtIG5fdG90YWxfc2FtcGxlcyAtIG5fdHJhaW5fc2FtcGxlc1xudGVzdF9pbmRpY2VzICAgIDwtIHNldGRpZmYoc2VxKDEsIG5fdHJhaW5fc2FtcGxlcyksIHRyYWluX2luZGljZXMpXG5gYGBcbmBgYCJ9 -->

```r
```r
test_fraction   <- 0.20
n_total_samples <- nrow(nn_dat)
n_train_samples <- ceiling((1 - test_fraction) * n_total_samples)
train_indices   <- sample(n_total_samples, n_train_samples)
n_test_samples  <- n_total_samples - n_train_samples
test_indices    <- setdiff(seq(1, n_train_samples), train_indices)

<!-- rnb-source-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->


Based on the indices, we can now create training and test data


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxueF90cmFpbiA8LSBubl9kYXQgJT4lIHNlbGVjdCgtY2xhc3NfbGFiZWwpICU+JSBhcy5tYXRyaXggJT4lIC5bdHJhaW5faW5kaWNlcyxdXG55X3RyYWluIDwtIG5uX2RhdCAlPiUgcHVsbChjbGFzc19sYWJlbCkgJT4lIC5bdHJhaW5faW5kaWNlc10gJT4lIHRvX2NhdGVnb3JpY2FsKDMpXG54X3Rlc3QgIDwtIG5uX2RhdCAlPiUgc2VsZWN0KC1jbGFzc19sYWJlbCkgJT4lIGFzLm1hdHJpeCAlPiUgLlt0ZXN0X2luZGljZXMsXVxueV90ZXN0ICA8LSBubl9kYXQgJT4lIHB1bGwoY2xhc3NfbGFiZWwpICU+JSAuW3Rlc3RfaW5kaWNlc10gJT4lIHRvX2NhdGVnb3JpY2FsKDMpXG5gYGBcbmBgYCJ9 -->

```r
```r
x_train <- nn_dat %>% select(-class_label) %>% as.matrix %>% .[train_indices,]
y_train <- nn_dat %>% pull(class_label) %>% .[train_indices] %>% to_categorical(3)
x_test  <- nn_dat %>% select(-class_label) %>% as.matrix %>% .[test_indices,]
y_test  <- nn_dat %>% pull(class_label) %>% .[test_indices] %>% to_categorical(3)

<!-- rnb-source-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->


### Set Architecture

With the data in place, we now set the architecture of our artificical neural network:


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxubW9kZWwgPC0ga2VyYXNfbW9kZWxfc2VxdWVudGlhbCgpXG5tb2RlbCAlPiUgXG4gIGxheWVyX2RlbnNlKHVuaXRzID0gNCwgYWN0aXZhdGlvbiA9ICdyZWx1JywgaW5wdXRfc2hhcGUgPSA0KSAlPiUgXG4gIGxheWVyX2RlbnNlKHVuaXRzID0gMywgYWN0aXZhdGlvbiA9ICdzb2Z0bWF4Jylcbm1vZGVsICU+JSBzdW1tYXJ5XG5gYGBcbmBgYCJ9 -->

```r
```r
model <- keras_model_sequential()
model %>% 
  layer_dense(units = 4, activation = 'relu', input_shape = 4) %>% 
  layer_dense(units = 3, activation = 'softmax')
model %>% summary

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiTW9kZWw6IFxcc2VxdWVudGlhbF8yXFxcbl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19cbkxheWVyICh0eXBlKSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBPdXRwdXQgU2hhcGUgICAgICAgICAgICAgICAgICAgICAgICAgICBQYXJhbSAjICAgICAgICBcbj09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1cbmRlbnNlXzUgKERlbnNlKSAgICAgICAgICAgICAgICAgICAgICAgICAgICAoTm9uZSwgNCkgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyMCAgICAgICAgICAgICBcbl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19cbmRlbnNlXzQgKERlbnNlKSAgICAgICAgICAgICAgICAgICAgICAgICAgICAoTm9uZSwgMykgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAxNSAgICAgICAgICAgICBcbj09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1cblRvdGFsIHBhcmFtczogMzVcblRyYWluYWJsZSBwYXJhbXM6IDM1XG5Ob24tdHJhaW5hYmxlIHBhcmFtczogMFxuX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX1xuIn0= -->

Model: 2
________________________________________________________________________________________________ Layer (type) Output Shape Param #
================================================================================================= dense_5 (Dense) (None, 4) 20
_________________________________________________________________________________________________ dense_4 (Dense) (None, 3) 15
================================================================================================= Total params: 35 Trainable params: 35 Non-trainable params: 0 _________________________________________________________________________________________________




<!-- rnb-output-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



Next, the architecture set in the model needs to be compiled:


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxubW9kZWwgJT4lIGNvbXBpbGUoXG4gIGxvc3MgICAgICA9ICdjYXRlZ29yaWNhbF9jcm9zc2VudHJvcHknLFxuICBvcHRpbWl6ZXIgPSBvcHRpbWl6ZXJfcm1zcHJvcCgpLFxuICBtZXRyaWNzICAgPSBjKCdhY2N1cmFjeScpXG4pXG5gYGBcbmBgYCJ9 -->

```r
```r
model %>% compile(
  loss      = 'categorical_crossentropy',
  optimizer = optimizer_rmsprop(),
  metrics   = c('accuracy')
)

<!-- rnb-source-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->


### Train the Artificial Neural Network

Lastly we fit the model and save the training progres in the `history` object:


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuaGlzdG9yeSA8LSBtb2RlbCAlPiUgZml0KFxuICB4ID0geF90cmFpbiwgeSA9IHlfdHJhaW4sXG4gIGVwb2NocyA9IDIwMCxcbiAgYmF0Y2hfc2l6ZSA9IDIwLFxuICB2YWxpZGF0aW9uX3NwbGl0ID0gMFxuKVxuYGBgXG5gYGAifQ== -->

```r
```r
history <- model %>% fit(
  x = x_train, y = y_train,
  epochs = 200,
  batch_size = 20,
  validation_split = 0
)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiRXBvY2ggMS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDEuMzE0NiAtIGFjY3VyYWN5OiAwLjQ1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2MzJ1cy9zdGVwIC0gbG9zczogMS4zMDkyIC0gYWNjdXJhY3k6IDAuMzMzM1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMXMgODVtcy9zdGVwIC0gbG9zczogMS4zMDkyIC0gYWNjdXJhY3k6IDAuMzMzMyBcbkVwb2NoIDIvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAxLjE4MjYgLSBhY2N1cmFjeTogMC4zNTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNTg2dXMvc3RlcCAtIGxvc3M6IDEuMjYzMSAtIGFjY3VyYWN5OiAwLjM1MDBcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDEuMjYzMSAtIGFjY3VyYWN5OiAwLjM1MDAgXG5FcG9jaCAzLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMS40MzgzIC0gYWNjdXJhY3k6IDAuMjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDNtcy9zdGVwIC0gbG9zczogMS4yMzA1IC0gYWNjdXJhY3k6IDAuMzU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyM21zL3N0ZXAgLSBsb3NzOiAxLjIzMDUgLSBhY2N1cmFjeTogMC4zNTgzXG5FcG9jaCA0LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC45NTQzIC0gYWNjdXJhY3k6IDAuNDUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDJtcy9zdGVwIC0gbG9zczogMS4yMDI1IC0gYWNjdXJhY3k6IDAuMzU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMm1zL3N0ZXAgLSBsb3NzOiAxLjIwMjUgLSBhY2N1cmFjeTogMC4zNTgzXG5FcG9jaCA1LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMS4yMjE2IC0gYWNjdXJhY3k6IDAuMzUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMS4xNzc2IC0gYWNjdXJhY3k6IDAuMzY2N1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAxLjE3NzYgLSBhY2N1cmFjeTogMC4zNjY3XG5FcG9jaCA2LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMS4yMzU2IC0gYWNjdXJhY3k6IDAuMjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDc1NHVzL3N0ZXAgLSBsb3NzOiAxLjE1NDUgLSBhY2N1cmFjeTogMC4zNjY3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAxLjE1NDUgLSBhY2N1cmFjeTogMC4zNjY3IFxuRXBvY2ggNy8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuODY4NiAtIGFjY3VyYWN5OiAwLjUwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAybXMvc3RlcCAtIGxvc3M6IDEuMTMyOCAtIGFjY3VyYWN5OiAwLjM2NjdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjJtcy9zdGVwIC0gbG9zczogMS4xMzI4IC0gYWNjdXJhY3k6IDAuMzY2N1xuRXBvY2ggOC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDEuMTk4MiAtIGFjY3VyYWN5OiAwLjE1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1MjJ1cy9zdGVwIC0gbG9zczogMS4xMTIyIC0gYWNjdXJhY3k6IDAuMzY2N1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMThtcy9zdGVwIC0gbG9zczogMS4xMTIyIC0gYWNjdXJhY3k6IDAuMzY2NyBcbkVwb2NoIDkvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAxLjI1NzIgLSBhY2N1cmFjeTogMC4xNTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNTgxdXMvc3RlcCAtIGxvc3M6IDEuMDkyOSAtIGFjY3VyYWN5OiAwLjM3NTBcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIwbXMvc3RlcCAtIGxvc3M6IDEuMDkyOSAtIGFjY3VyYWN5OiAwLjM3NTAgXG5FcG9jaCAxMC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDEuMDEzOCAtIGFjY3VyYWN5OiAwLjM1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA4Mzh1cy9zdGVwIC0gbG9zczogMS4wNzQ1IC0gYWNjdXJhY3k6IDAuMzgzM1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMS4wNzQ1IC0gYWNjdXJhY3k6IDAuMzgzMyBcbkVwb2NoIDExLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMS4wNTkwIC0gYWNjdXJhY3k6IDAuMzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDNtcy9zdGVwIC0gbG9zczogMS4wNTcwIC0gYWNjdXJhY3k6IDAuMzgzM1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyM21zL3N0ZXAgLSBsb3NzOiAxLjA1NzAgLSBhY2N1cmFjeTogMC4zODMzXG5FcG9jaCAxMi8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDEuMDQ2MCAtIGFjY3VyYWN5OiAwLjMwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAybXMvc3RlcCAtIGxvc3M6IDEuMDQwMyAtIGFjY3VyYWN5OiAwLjM4MzNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjNtcy9zdGVwIC0gbG9zczogMS4wNDAzIC0gYWNjdXJhY3k6IDAuMzgzM1xuRXBvY2ggMTMvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAxLjExNjIgLSBhY2N1cmFjeTogMC4yNTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAxLjAyNDUgLSBhY2N1cmFjeTogMC4zOTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIxbXMvc3RlcCAtIGxvc3M6IDEuMDI0NSAtIGFjY3VyYWN5OiAwLjM5MTdcbkVwb2NoIDE0LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC44NzA3IC0gYWNjdXJhY3k6IDAuNTAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDNtcy9zdGVwIC0gbG9zczogMS4wMDkwIC0gYWNjdXJhY3k6IDAuNDA4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyM21zL3N0ZXAgLSBsb3NzOiAxLjAwOTAgLSBhY2N1cmFjeTogMC40MDgzXG5FcG9jaCAxNS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuOTcxMyAtIGFjY3VyYWN5OiAwLjQwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuOTk0MSAtIGFjY3VyYWN5OiAwLjQwODNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC45OTQxIC0gYWNjdXJhY3k6IDAuNDA4M1xuRXBvY2ggMTYvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjkxNTEgLSBhY2N1cmFjeTogMC41MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNTc5dXMvc3RlcCAtIGxvc3M6IDAuOTc5NCAtIGFjY3VyYWN5OiAwLjQwODNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE4bXMvc3RlcCAtIGxvc3M6IDAuOTc5NCAtIGFjY3VyYWN5OiAwLjQwODMgXG5FcG9jaCAxNy8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuODkzMiAtIGFjY3VyYWN5OiAwLjUwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1OTV1cy9zdGVwIC0gbG9zczogMC45NjU2IC0gYWNjdXJhY3k6IDAuNDA4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC45NjU2IC0gYWNjdXJhY3k6IDAuNDA4MyBcbkVwb2NoIDE4LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMS4xMDU5IC0gYWNjdXJhY3k6IDAuMzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDJtcy9zdGVwIC0gbG9zczogMC45NTIyIC0gYWNjdXJhY3k6IDAuNDA4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMm1zL3N0ZXAgLSBsb3NzOiAwLjk1MjIgLSBhY2N1cmFjeTogMC40MDgzXG5FcG9jaCAxOS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuOTA4NSAtIGFjY3VyYWN5OiAwLjQ1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAybXMvc3RlcCAtIGxvc3M6IDAuOTM5MiAtIGFjY3VyYWN5OiAwLjQzMzNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjFtcy9zdGVwIC0gbG9zczogMC45MzkyIC0gYWNjdXJhY3k6IDAuNDMzM1xuRXBvY2ggMjAvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjg4ODMgLSBhY2N1cmFjeTogMC40NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNzkwdXMvc3RlcCAtIGxvc3M6IDAuOTI2NiAtIGFjY3VyYWN5OiAwLjQ1MDBcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuOTI2NiAtIGFjY3VyYWN5OiAwLjQ1MDAgXG5FcG9jaCAyMS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDEuMDAzMSAtIGFjY3VyYWN5OiAwLjQ1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuOTE0NSAtIGFjY3VyYWN5OiAwLjQ0MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC45MTQ1IC0gYWNjdXJhY3k6IDAuNDQxN1xuRXBvY2ggMjIvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjcyNzUgLSBhY2N1cmFjeTogMC41NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjkwMjkgLSBhY2N1cmFjeTogMC40NTgzXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIybXMvc3RlcCAtIGxvc3M6IDAuOTAyOSAtIGFjY3VyYWN5OiAwLjQ1ODNcbkVwb2NoIDIzLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC45NTAzIC0gYWNjdXJhY3k6IDAuNDAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC44OTE4IC0gYWNjdXJhY3k6IDAuNDUwMFxuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMW1zL3N0ZXAgLSBsb3NzOiAwLjg5MTggLSBhY2N1cmFjeTogMC40NTAwXG5FcG9jaCAyNC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzE0OCAtIGFjY3VyYWN5OiAwLjUwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2MjV1cy9zdGVwIC0gbG9zczogMC44ODEzIC0gYWNjdXJhY3k6IDAuNDUwMFxuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMThtcy9zdGVwIC0gbG9zczogMC44ODEzIC0gYWNjdXJhY3k6IDAuNDUwMCBcbkVwb2NoIDI1LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMS4yNTc3IC0gYWNjdXJhY3k6IDAuMzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDYyN3VzL3N0ZXAgLSBsb3NzOiAwLjg3MTAgLSBhY2N1cmFjeTogMC40NTAwXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjg3MTAgLSBhY2N1cmFjeTogMC40NTAwIFxuRXBvY2ggMjYvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjczOTMgLSBhY2N1cmFjeTogMC42NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNTUydXMvc3RlcCAtIGxvc3M6IDAuODYxMyAtIGFjY3VyYWN5OiAwLjQ1MDBcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE4bXMvc3RlcCAtIGxvc3M6IDAuODYxMyAtIGFjY3VyYWN5OiAwLjQ1MDAgXG5FcG9jaCAyNy8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzg5MSAtIGFjY3VyYWN5OiAwLjQ1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA3ODZ1cy9zdGVwIC0gbG9zczogMC44NTE2IC0gYWNjdXJhY3k6IDAuNDU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC44NTE2IC0gYWNjdXJhY3k6IDAuNDU4MyBcbkVwb2NoIDI4LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC43MDE0IC0gYWNjdXJhY3k6IDAuNTAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC44NDIzIC0gYWNjdXJhY3k6IDAuNDY2N1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMW1zL3N0ZXAgLSBsb3NzOiAwLjg0MjMgLSBhY2N1cmFjeTogMC40NjY3XG5FcG9jaCAyOS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDEuMDE0NSAtIGFjY3VyYWN5OiAwLjQwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuODMzMyAtIGFjY3VyYWN5OiAwLjQ5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC44MzMzIC0gYWNjdXJhY3k6IDAuNDkxN1xuRXBvY2ggMzAvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjkyNDcgLSBhY2N1cmFjeTogMC40NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjgyNDQgLSBhY2N1cmFjeTogMC41MDgzXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIxbXMvc3RlcCAtIGxvc3M6IDAuODI0NCAtIGFjY3VyYWN5OiAwLjUwODNcbkVwb2NoIDMxLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42NzM4IC0gYWNjdXJhY3k6IDAuNjUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC44MTU4IC0gYWNjdXJhY3k6IDAuNTA4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAwLjgxNTggLSBhY2N1cmFjeTogMC41MDgzXG5FcG9jaCAzMi8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuODM5MyAtIGFjY3VyYWN5OiAwLjU1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2Mjl1cy9zdGVwIC0gbG9zczogMC44MDc1IC0gYWNjdXJhY3k6IDAuNTA4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC44MDc1IC0gYWNjdXJhY3k6IDAuNTA4MyBcbkVwb2NoIDMzLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42NjcxIC0gYWNjdXJhY3k6IDAuNTAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDc1NHVzL3N0ZXAgLSBsb3NzOiAwLjc5OTUgLSBhY2N1cmFjeTogMC41MDAwXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjc5OTUgLSBhY2N1cmFjeTogMC41MDAwIFxuRXBvY2ggMzQvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjgxMzQgLSBhY2N1cmFjeTogMC40NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjc5MTcgLSBhY2N1cmFjeTogMC40OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIybXMvc3RlcCAtIGxvc3M6IDAuNzkxNyAtIGFjY3VyYWN5OiAwLjQ5MTdcbkVwb2NoIDM1LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42ODkyIC0gYWNjdXJhY3k6IDAuNTUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDNtcy9zdGVwIC0gbG9zczogMC43ODQ1IC0gYWNjdXJhY3k6IDAuNTA4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyM21zL3N0ZXAgLSBsb3NzOiAwLjc4NDUgLSBhY2N1cmFjeTogMC41MDgzXG5FcG9jaCAzNi8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjg3OSAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1ODV1cy9zdGVwIC0gbG9zczogMC43NzcyIC0gYWNjdXJhY3k6IDAuNTMzM1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC43NzcyIC0gYWNjdXJhY3k6IDAuNTMzMyBcbkVwb2NoIDM3LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42OTk4IC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDJtcy9zdGVwIC0gbG9zczogMC43NzAzIC0gYWNjdXJhY3k6IDAuNTUwMFxuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyM21zL3N0ZXAgLSBsb3NzOiAwLjc3MDMgLSBhY2N1cmFjeTogMC41NTAwXG5FcG9jaCAzOC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjcwOSAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAybXMvc3RlcCAtIGxvc3M6IDAuNzYzNCAtIGFjY3VyYWN5OiAwLjU1MDBcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjJtcy9zdGVwIC0gbG9zczogMC43NjM0IC0gYWNjdXJhY3k6IDAuNTUwMFxuRXBvY2ggMzkvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjc4ODAgLSBhY2N1cmFjeTogMC42MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjc1NjcgLSBhY2N1cmFjeTogMC41NzUwXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIybXMvc3RlcCAtIGxvc3M6IDAuNzU2NyAtIGFjY3VyYWN5OiAwLjU3NTBcbkVwb2NoIDQwLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC43MzE0IC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDYxN3VzL3N0ZXAgLSBsb3NzOiAwLjc1MDEgLSBhY2N1cmFjeTogMC41ODMzXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjc1MDEgLSBhY2N1cmFjeTogMC41ODMzIFxuRXBvY2ggNDEvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjcyNjkgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjE4dXMvc3RlcCAtIGxvc3M6IDAuNzQzOSAtIGFjY3VyYWN5OiAwLjU4MzNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNzQzOSAtIGFjY3VyYWN5OiAwLjU4MzMgXG5FcG9jaCA0Mi8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzEzMyAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAybXMvc3RlcCAtIGxvc3M6IDAuNzM3OCAtIGFjY3VyYWN5OiAwLjU4MzNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjFtcy9zdGVwIC0gbG9zczogMC43Mzc4IC0gYWNjdXJhY3k6IDAuNTgzM1xuRXBvY2ggNDMvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjYzMTQgLSBhY2N1cmFjeTogMC41NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNzAydXMvc3RlcCAtIGxvc3M6IDAuNzMyMCAtIGFjY3VyYWN5OiAwLjU4MzNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNzMyMCAtIGFjY3VyYWN5OiAwLjU4MzMgXG5FcG9jaCA0NC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjIwOCAtIGFjY3VyYWN5OiAwLjU1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAybXMvc3RlcCAtIGxvc3M6IDAuNzI2NCAtIGFjY3VyYWN5OiAwLjYwMDBcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjJtcy9zdGVwIC0gbG9zczogMC43MjY0IC0gYWNjdXJhY3k6IDAuNjAwMFxuRXBvY2ggNDUvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjQ1MDggLSBhY2N1cmFjeTogMC43MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgODQ3dXMvc3RlcCAtIGxvc3M6IDAuNzIxMSAtIGFjY3VyYWN5OiAwLjU5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIxbXMvc3RlcCAtIGxvc3M6IDAuNzIxMSAtIGFjY3VyYWN5OiAwLjU5MTcgXG5FcG9jaCA0Ni8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzAxOCAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2MTd1cy9zdGVwIC0gbG9zczogMC43MTU4IC0gYWNjdXJhY3k6IDAuNTkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC43MTU4IC0gYWNjdXJhY3k6IDAuNTkxNyBcbkVwb2NoIDQ3LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42ODg4IC0gYWNjdXJhY3k6IDAuNTUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDU5MnVzL3N0ZXAgLSBsb3NzOiAwLjcxMDggLSBhY2N1cmFjeTogMC42MDAwXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjcxMDggLSBhY2N1cmFjeTogMC42MDAwIFxuRXBvY2ggNDgvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjcxMzYgLSBhY2N1cmFjeTogMC42MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNzI4dXMvc3RlcCAtIGxvc3M6IDAuNzA1OSAtIGFjY3VyYWN5OiAwLjYxNjdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNzA1OSAtIGFjY3VyYWN5OiAwLjYxNjcgXG5FcG9jaCA0OS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzI2NCAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA3NjF1cy9zdGVwIC0gbG9zczogMC43MDExIC0gYWNjdXJhY3k6IDAuNjI1MFxuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC43MDExIC0gYWNjdXJhY3k6IDAuNjI1MCBcbkVwb2NoIDUwLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC43MzA2IC0gYWNjdXJhY3k6IDAuNzUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDc4M3VzL3N0ZXAgLSBsb3NzOiAwLjY5NjYgLSBhY2N1cmFjeTogMC42MzMzXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjY5NjYgLSBhY2N1cmFjeTogMC42MzMzIFxuRXBvY2ggNTEvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjQ4NzkgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgODM1dXMvc3RlcCAtIGxvc3M6IDAuNjkyNSAtIGFjY3VyYWN5OiAwLjYzMzNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNjkyNSAtIGFjY3VyYWN5OiAwLjYzMzMgXG5FcG9jaCA1Mi8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjEzNCAtIGFjY3VyYWN5OiAwLjc1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAybXMvc3RlcCAtIGxvc3M6IDAuNjg4MiAtIGFjY3VyYWN5OiAwLjY0MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjJtcy9zdGVwIC0gbG9zczogMC42ODgyIC0gYWNjdXJhY3k6IDAuNjQxN1xuRXBvY2ggNTMvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU4MDQgLSBhY2N1cmFjeTogMC43MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMW1zL3N0ZXAgLSBsb3NzOiAwLjY4NDEgLSBhY2N1cmFjeTogMC42NDE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIwbXMvc3RlcCAtIGxvc3M6IDAuNjg0MSAtIGFjY3VyYWN5OiAwLjY0MTdcbkVwb2NoIDU0LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41NjU3IC0gYWNjdXJhY3k6IDAuODAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDNtcy9zdGVwIC0gbG9zczogMC42ODAzIC0gYWNjdXJhY3k6IDAuNjU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyNG1zL3N0ZXAgLSBsb3NzOiAwLjY4MDMgLSBhY2N1cmFjeTogMC42NTgzXG5FcG9jaCA1NS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuODQ1OCAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAybXMvc3RlcCAtIGxvc3M6IDAuNjc2NSAtIGFjY3VyYWN5OiAwLjY1ODNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjFtcy9zdGVwIC0gbG9zczogMC42NzY1IC0gYWNjdXJhY3k6IDAuNjU4M1xuRXBvY2ggNTYvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjgxNzQgLSBhY2N1cmFjeTogMC41NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNTk3dXMvc3RlcCAtIGxvc3M6IDAuNjcyOSAtIGFjY3VyYWN5OiAwLjY1ODNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE4bXMvc3RlcCAtIGxvc3M6IDAuNjcyOSAtIGFjY3VyYWN5OiAwLjY1ODMgXG5FcG9jaCA1Ny8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjAxOCAtIGFjY3VyYWN5OiAwLjUwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2OTV1cy9zdGVwIC0gbG9zczogMC42Njk1IC0gYWNjdXJhY3k6IDAuNjU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC42Njk1IC0gYWNjdXJhY3k6IDAuNjU4MyBcbkVwb2NoIDU4LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42OTU1IC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDJtcy9zdGVwIC0gbG9zczogMC42NjYxIC0gYWNjdXJhY3k6IDAuNjU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMW1zL3N0ZXAgLSBsb3NzOiAwLjY2NjEgLSBhY2N1cmFjeTogMC42NTgzXG5FcG9jaCA1OS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzQ4MCAtIGFjY3VyYWN5OiAwLjgwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2NDl1cy9zdGVwIC0gbG9zczogMC42NjMwIC0gYWNjdXJhY3k6IDAuNjU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC42NjMwIC0gYWNjdXJhY3k6IDAuNjU4MyBcbkVwb2NoIDYwLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42NzEyIC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC42NTk4IC0gYWNjdXJhY3k6IDAuNjU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMW1zL3N0ZXAgLSBsb3NzOiAwLjY1OTggLSBhY2N1cmFjeTogMC42NTgzXG5FcG9jaCA2MS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzYzOCAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAybXMvc3RlcCAtIGxvc3M6IDAuNjU2OCAtIGFjY3VyYWN5OiAwLjY1ODNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjJtcy9zdGVwIC0gbG9zczogMC42NTY4IC0gYWNjdXJhY3k6IDAuNjU4M1xuRXBvY2ggNjIvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjc3MzMgLSBhY2N1cmFjeTogMC43MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMW1zL3N0ZXAgLSBsb3NzOiAwLjY1MzkgLSBhY2N1cmFjeTogMC42NTgzXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIxbXMvc3RlcCAtIGxvc3M6IDAuNjUzOSAtIGFjY3VyYWN5OiAwLjY1ODNcbkVwb2NoIDYzLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC43NDE1IC0gYWNjdXJhY3k6IDAuNzUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDNtcy9zdGVwIC0gbG9zczogMC42NTEwIC0gYWNjdXJhY3k6IDAuNjU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyM21zL3N0ZXAgLSBsb3NzOiAwLjY1MTAgLSBhY2N1cmFjeTogMC42NTgzXG5FcG9jaCA2NC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjU0MyAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1Nzl1cy9zdGVwIC0gbG9zczogMC42NDgyIC0gYWNjdXJhY3k6IDAuNjU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMThtcy9zdGVwIC0gbG9zczogMC42NDgyIC0gYWNjdXJhY3k6IDAuNjU4MyBcbkVwb2NoIDY1LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42MjA2IC0gYWNjdXJhY3k6IDAuNjUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDYyNHVzL3N0ZXAgLSBsb3NzOiAwLjY0NTQgLSBhY2N1cmFjeTogMC42NTgzXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjY0NTQgLSBhY2N1cmFjeTogMC42NTgzIFxuRXBvY2ggNjYvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjY2MDUgLSBhY2N1cmFjeTogMC42MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjY0MjcgLSBhY2N1cmFjeTogMC42NTgzXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIybXMvc3RlcCAtIGxvc3M6IDAuNjQyNyAtIGFjY3VyYWN5OiAwLjY1ODNcbkVwb2NoIDY3LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41MTgyIC0gYWNjdXJhY3k6IDAuNjUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDJtcy9zdGVwIC0gbG9zczogMC42NDAzIC0gYWNjdXJhY3k6IDAuNjU4M1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMm1zL3N0ZXAgLSBsb3NzOiAwLjY0MDMgLSBhY2N1cmFjeTogMC42NTgzXG5FcG9jaCA2OC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjQzOSAtIGFjY3VyYWN5OiAwLjgwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNjM3OSAtIGFjY3VyYWN5OiAwLjY1ODNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjNtcy9zdGVwIC0gbG9zczogMC42Mzc5IC0gYWNjdXJhY3k6IDAuNjU4M1xuRXBvY2ggNjkvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU5MTUgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjYzNTcgLSBhY2N1cmFjeTogMC42NjY3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIybXMvc3RlcCAtIGxvc3M6IDAuNjM1NyAtIGFjY3VyYWN5OiAwLjY2NjdcbkVwb2NoIDcwLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42NDM4IC0gYWNjdXJhY3k6IDAuODAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC42MzM2IC0gYWNjdXJhY3k6IDAuNjY2N1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMW1zL3N0ZXAgLSBsb3NzOiAwLjYzMzYgLSBhY2N1cmFjeTogMC42NjY3XG5FcG9jaCA3MS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTk1MyAtIGFjY3VyYWN5OiAwLjc1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNjMxNiAtIGFjY3VyYWN5OiAwLjY2NjdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjFtcy9zdGVwIC0gbG9zczogMC42MzE2IC0gYWNjdXJhY3k6IDAuNjY2N1xuRXBvY2ggNzIvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjc5MzYgLSBhY2N1cmFjeTogMC41NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNTg1dXMvc3RlcCAtIGxvc3M6IDAuNjI5NiAtIGFjY3VyYWN5OiAwLjY2NjdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNjI5NiAtIGFjY3VyYWN5OiAwLjY2NjcgXG5FcG9jaCA3My8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTU3NiAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNjI3NSAtIGFjY3VyYWN5OiAwLjY2NjdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjFtcy9zdGVwIC0gbG9zczogMC42Mjc1IC0gYWNjdXJhY3k6IDAuNjY2N1xuRXBvY2ggNzQvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU1ODMgLSBhY2N1cmFjeTogMC42NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNzIxdXMvc3RlcCAtIGxvc3M6IDAuNjI1NSAtIGFjY3VyYWN5OiAwLjY4MzNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNjI1NSAtIGFjY3VyYWN5OiAwLjY4MzMgXG5FcG9jaCA3NS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzY1MCAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNjIzNiAtIGFjY3VyYWN5OiAwLjY4MzNcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC42MjM2IC0gYWNjdXJhY3k6IDAuNjgzM1xuRXBvY2ggNzYvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjUzNTIgLSBhY2N1cmFjeTogMC44MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMW1zL3N0ZXAgLSBsb3NzOiAwLjYyMTcgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIwbXMvc3RlcCAtIGxvc3M6IDAuNjIxNyAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDc3LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41MzU4IC0gYWNjdXJhY3k6IDAuODUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC42MTk4IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAwLjYxOTggLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCA3OC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjg3OSAtIGFjY3VyYWN5OiAwLjU1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA3MTN1cy9zdGVwIC0gbG9zczogMC42MTgwIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC42MTgwIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDc5LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41OTk0IC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDNtcy9zdGVwIC0gbG9zczogMC42MTY0IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyM21zL3N0ZXAgLSBsb3NzOiAwLjYxNjQgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCA4MC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzI4MSAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA3NDB1cy9zdGVwIC0gbG9zczogMC42MTQ3IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC42MTQ3IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDgxLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41ODA4IC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDY0OHVzL3N0ZXAgLSBsb3NzOiAwLjYxMzEgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA0N21zL3N0ZXAgLSBsb3NzOiAwLjYxMzEgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggODIvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU4MzkgLSBhY2N1cmFjeTogMC43MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjYxMTUgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIybXMvc3RlcCAtIGxvc3M6IDAuNjExNSAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDgzLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42MzQwIC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDUzMnVzL3N0ZXAgLSBsb3NzOiAwLjYxMDAgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOG1zL3N0ZXAgLSBsb3NzOiAwLjYxMDAgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggODQvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjYxNjUgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgM21zL3N0ZXAgLSBsb3NzOiAwLjYwODUgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIzbXMvc3RlcCAtIGxvc3M6IDAuNjA4NSAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDg1LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42MTI2IC0gYWNjdXJhY3k6IDAuNzUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC42MDcwIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAwLjYwNzAgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCA4Ni8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTc3OCAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA3Nzd1cy9zdGVwIC0gbG9zczogMC42MDU2IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC42MDU2IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDg3LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41NzIyIC0gYWNjdXJhY3k6IDAuNzUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDU4OHVzL3N0ZXAgLSBsb3NzOiAwLjYwNDIgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjYwNDIgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggODgvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjczMzEgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjYwMjkgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIzbXMvc3RlcCAtIGxvc3M6IDAuNjAyOSAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDg5LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41NzM2IC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC42MDE1IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAwLjYwMTUgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCA5MC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTc4NiAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNjAwMiAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC42MDAyIC0gYWNjdXJhY3k6IDAuNjkxN1xuRXBvY2ggOTEvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjYyNTYgLSBhY2N1cmFjeTogMC42MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjU5ODggLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIybXMvc3RlcCAtIGxvc3M6IDAuNTk4OCAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDkyLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42MTAzIC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC41OTc1IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAwLjU5NzUgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCA5My8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzQ0NCAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNTk2MyAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC41OTYzIC0gYWNjdXJhY3k6IDAuNjkxN1xuRXBvY2ggOTQvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjY5NTYgLSBhY2N1cmFjeTogMC42NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNzE3dXMvc3RlcCAtIGxvc3M6IDAuNTk1MCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNTk1MCAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCA5NS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTI1OSAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA3MDB1cy9zdGVwIC0gbG9zczogMC41OTM4IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41OTM4IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDk2LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC43MTA3IC0gYWNjdXJhY3k6IDAuNTAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC41OTI2IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAwLjU5MjYgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCA5Ny8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNDQ0MSAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA5MDJ1cy9zdGVwIC0gbG9zczogMC41OTE0IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41OTE0IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDk4LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41MjI0IC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC41OTAzIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAwLjU5MDMgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCA5OS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjIyMiAtIGFjY3VyYWN5OiAwLjg1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA5NjJ1cy9zdGVwIC0gbG9zczogMC41ODkyIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41ODkyIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEwMC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNzMzNyAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAybXMvc3RlcCAtIGxvc3M6IDAuNTg4MSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjNtcy9zdGVwIC0gbG9zczogMC41ODgxIC0gYWNjdXJhY3k6IDAuNjkxN1xuRXBvY2ggMTAxLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41MTk1IC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDcxOHVzL3N0ZXAgLSBsb3NzOiAwLjU4NzEgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU4NzEgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTAyLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42NTE0IC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDY1NnVzL3N0ZXAgLSBsb3NzOiAwLjU4NjEgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU4NjEgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTAzLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41Mzc1IC0gYWNjdXJhY3k6IDAuODUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDU5NnVzL3N0ZXAgLSBsb3NzOiAwLjU4NTEgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU4NTEgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTA0LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC4zNzIyIC0gYWNjdXJhY3k6IDAuOTAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDU4NnVzL3N0ZXAgLSBsb3NzOiAwLjU4NDEgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU4NDEgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTA1LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42MDk3IC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC41ODMyIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMW1zL3N0ZXAgLSBsb3NzOiAwLjU4MzIgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCAxMDYvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjY4MDMgLSBhY2N1cmFjeTogMC42NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgOTQ0dXMvc3RlcCAtIGxvc3M6IDAuNTgyMiAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIwbXMvc3RlcCAtIGxvc3M6IDAuNTgyMiAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxMDcvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjYzOTggLSBhY2N1cmFjeTogMC42NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgODYxdXMvc3RlcCAtIGxvc3M6IDAuNTgxNCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNTgxNCAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxMDgvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU0NjAgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMW1zL3N0ZXAgLSBsb3NzOiAwLjU4MDMgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIwbXMvc3RlcCAtIGxvc3M6IDAuNTgwMyAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDEwOS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTkyMiAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA4MDV1cy9zdGVwIC0gbG9zczogMC41Nzk0IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41Nzk0IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDExMC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjI5OSAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNTc4NCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC41Nzg0IC0gYWNjdXJhY3k6IDAuNjkxN1xuRXBvY2ggMTExLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC43NzM4IC0gYWNjdXJhY3k6IDAuNTAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDY3OHVzL3N0ZXAgLSBsb3NzOiAwLjU3NzUgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU3NzUgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTEyLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42NjY5IC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDU4N3VzL3N0ZXAgLSBsb3NzOiAwLjU3NjUgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOG1zL3N0ZXAgLSBsb3NzOiAwLjU3NjUgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTEzLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC40MTE1IC0gYWNjdXJhY3k6IDAuODUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDJtcy9zdGVwIC0gbG9zczogMC41NzU2IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMm1zL3N0ZXAgLSBsb3NzOiAwLjU3NTYgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCAxMTQvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU4NzEgLSBhY2N1cmFjeTogMC43MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjk3dXMvc3RlcCAtIGxvc3M6IDAuNTc0NiAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNTc0NiAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxMTUvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjUwMTQgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjU3MzcgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIybXMvc3RlcCAtIGxvc3M6IDAuNTczNyAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDExNi8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjMwMCAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2NTd1cy9zdGVwIC0gbG9zczogMC41NzI3IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41NzI3IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDExNy8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNDQ2NiAtIGFjY3VyYWN5OiAwLjg1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAzbXMvc3RlcCAtIGxvc3M6IDAuNTcxOCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjRtcy9zdGVwIC0gbG9zczogMC41NzE4IC0gYWNjdXJhY3k6IDAuNjkxN1xuRXBvY2ggMTE4LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41Mjk0IC0gYWNjdXJhY3k6IDAuODAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDJtcy9zdGVwIC0gbG9zczogMC41NzEwIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMm1zL3N0ZXAgLSBsb3NzOiAwLjU3MTAgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCAxMTkvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU0NDggLSBhY2N1cmFjeTogMC43MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNzAydXMvc3RlcCAtIGxvc3M6IDAuNTcwMCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNTcwMCAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxMjAvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjY4NzcgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNTg0dXMvc3RlcCAtIGxvc3M6IDAuNTY5MSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE4bXMvc3RlcCAtIGxvc3M6IDAuNTY5MSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxMjEvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjY0ODkgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNzY1dXMvc3RlcCAtIGxvc3M6IDAuNTY4MiAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNTY4MiAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxMjIvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU2NTAgLSBhY2N1cmFjeTogMC41NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMW1zL3N0ZXAgLSBsb3NzOiAwLjU2NzQgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIwbXMvc3RlcCAtIGxvc3M6IDAuNTY3NCAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDEyMy8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjQwNiAtIGFjY3VyYWN5OiAwLjU1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2ODd1cy9zdGVwIC0gbG9zczogMC41NjY1IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41NjY1IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEyNC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjE0MyAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA5ODl1cy9zdGVwIC0gbG9zczogMC41NjU1IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC41NjU1IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEyNS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjA4MyAtIGFjY3VyYWN5OiAwLjc1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA4NDh1cy9zdGVwIC0gbG9zczogMC41NjQ2IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC41NjQ2IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEyNi8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjIyOCAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1ODh1cy9zdGVwIC0gbG9zczogMC41NjM3IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41NjM3IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEyNy8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTQ2NSAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2MTJ1cy9zdGVwIC0gbG9zczogMC41NjI4IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41NjI4IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEyOC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTI5OCAtIGFjY3VyYWN5OiAwLjc1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1NzB1cy9zdGVwIC0gbG9zczogMC41NjE5IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41NjE5IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEyOS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNDI4MSAtIGFjY3VyYWN5OiAwLjg1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA5MzV1cy9zdGVwIC0gbG9zczogMC41NjExIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC41NjExIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEzMC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjY5NSAtIGFjY3VyYWN5OiAwLjU1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2MDF1cy9zdGVwIC0gbG9zczogMC41NjAxIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41NjAxIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEzMS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTgxMSAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA5NjJ1cy9zdGVwIC0gbG9zczogMC41NTkzIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC41NTkzIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEzMi8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjAxOCAtIGFjY3VyYWN5OiAwLjc1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2ODl1cy9zdGVwIC0gbG9zczogMC41NTg0IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41NTg0IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDEzMy8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjU0MyAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNTU3NSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjFtcy9zdGVwIC0gbG9zczogMC41NTc1IC0gYWNjdXJhY3k6IDAuNjkxN1xuRXBvY2ggMTM0LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC40MzgzIC0gYWNjdXJhY3k6IDAuODAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDY5M3VzL3N0ZXAgLSBsb3NzOiAwLjU1NjUgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU1NjUgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTM1LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42MzE2IC0gYWNjdXJhY3k6IDAuNzUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDk3NHVzL3N0ZXAgLSBsb3NzOiAwLjU1NTYgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAwLjU1NTYgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTM2LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41MTUyIC0gYWNjdXJhY3k6IDAuODAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDYyM3VzL3N0ZXAgLSBsb3NzOiAwLjU1NDcgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU1NDcgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTM3LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42MDM1IC0gYWNjdXJhY3k6IDAuNjUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDYxNXVzL3N0ZXAgLSBsb3NzOiAwLjU1MzggLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU1MzggLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTM4LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41NDcyIC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC41NTI5IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMW1zL3N0ZXAgLSBsb3NzOiAwLjU1MjkgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCAxMzkvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjY2ODYgLSBhY2N1cmFjeTogMC41MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgODA5dXMvc3RlcCAtIGxvc3M6IDAuNTUyMCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNTUyMCAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxNDAvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjUyMDEgLSBhY2N1cmFjeTogMC41MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMW1zL3N0ZXAgLSBsb3NzOiAwLjU1MTEgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIxbXMvc3RlcCAtIGxvc3M6IDAuNTUxMSAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDE0MS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjkyOCAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA3MjB1cy9zdGVwIC0gbG9zczogMC41NTAxIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41NTAxIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE0Mi8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTI2MCAtIGFjY3VyYWN5OiAwLjg1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNTQ5NCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC41NDk0IC0gYWNjdXJhY3k6IDAuNjkxN1xuRXBvY2ggMTQzLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42MTc4IC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDczN3VzL3N0ZXAgLSBsb3NzOiAwLjU0ODQgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU0ODQgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTQ0LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC40MDg5IC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDY2OHVzL3N0ZXAgLSBsb3NzOiAwLjU0NzUgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU0NzUgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTQ1LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41ODYwIC0gYWNjdXJhY3k6IDAuNTUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDYxMHVzL3N0ZXAgLSBsb3NzOiAwLjU0NjUgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU0NjUgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTQ2LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41NTE1IC0gYWNjdXJhY3k6IDAuNzUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDY3NXVzL3N0ZXAgLSBsb3NzOiAwLjU0NTYgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU0NTYgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTQ3LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41MTY5IC0gYWNjdXJhY3k6IDAuNzUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDY1NHVzL3N0ZXAgLSBsb3NzOiAwLjU0NDYgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU0NDYgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTQ4LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41NjExIC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDU5OHVzL3N0ZXAgLSBsb3NzOiAwLjU0MzYgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU0MzYgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTQ5LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC40ODc2IC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDgzOHVzL3N0ZXAgLSBsb3NzOiAwLjU0MjcgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjU0MjcgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTUwLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41NTk3IC0gYWNjdXJhY3k6IDAuNjUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC41NDE4IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAwLjU0MTggLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCAxNTEvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjY1MzEgLSBhY2N1cmFjeTogMC42NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgOTA0dXMvc3RlcCAtIGxvc3M6IDAuNTQwOCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIwbXMvc3RlcCAtIGxvc3M6IDAuNTQwOCAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxNTIvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjQ3NTggLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgODA0dXMvc3RlcCAtIGxvc3M6IDAuNTM5OSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIxbXMvc3RlcCAtIGxvc3M6IDAuNTM5OSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxNTMvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjYwNzIgLSBhY2N1cmFjeTogMC41NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjQ1dXMvc3RlcCAtIGxvc3M6IDAuNTM4OSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNTM4OSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxNTQvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU4OTEgLSBhY2N1cmFjeTogMC43MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjA1dXMvc3RlcCAtIGxvc3M6IDAuNTM3OSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE4bXMvc3RlcCAtIGxvc3M6IDAuNTM3OSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxNTUvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU3MDUgLSBhY2N1cmFjeTogMC42MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMm1zL3N0ZXAgLSBsb3NzOiAwLjUzNjggLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIybXMvc3RlcCAtIGxvc3M6IDAuNTM2OCAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDE1Ni8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTE2OSAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA4MzB1cy9zdGVwIC0gbG9zczogMC41MzU3IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MzU3IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE1Ny8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNDE0NCAtIGFjY3VyYWN5OiAwLjc1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA5MjZ1cy9zdGVwIC0gbG9zczogMC41MzQ2IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC41MzQ2IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE1OC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTMwMiAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2Nzd1cy9zdGVwIC0gbG9zczogMC41MzM2IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MzM2IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE1OS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTg3MyAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA3MTN1cy9zdGVwIC0gbG9zczogMC41MzI1IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MzI1IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE2MC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTczMyAtIGFjY3VyYWN5OiAwLjc1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1OTh1cy9zdGVwIC0gbG9zczogMC41MzE0IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MzE0IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE2MS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNDgxMiAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA3MjF1cy9zdGVwIC0gbG9zczogMC41MzAzIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MzAzIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE2Mi8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjY2MCAtIGFjY3VyYWN5OiAwLjU1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1OTF1cy9zdGVwIC0gbG9zczogMC41MjkyIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMThtcy9zdGVwIC0gbG9zczogMC41MjkyIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE2My8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTExNCAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1Nzl1cy9zdGVwIC0gbG9zczogMC41MjgxIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MjgxIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE2NC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNjEzMCAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1OTd1cy9zdGVwIC0gbG9zczogMC41MjcwIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MjcwIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE2NS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTIwNiAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA4MTR1cy9zdGVwIC0gbG9zczogMC41MjU5IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MjU5IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE2Ni8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTk5OCAtIGFjY3VyYWN5OiAwLjc1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNTI0OCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC41MjQ4IC0gYWNjdXJhY3k6IDAuNjkxN1xuRXBvY2ggMTY3LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41NTU2IC0gYWNjdXJhY3k6IDAuNTUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDg0MHVzL3N0ZXAgLSBsb3NzOiAwLjUyMzYgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjUyMzYgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTY4LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC40NTM3IC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDc0NHVzL3N0ZXAgLSBsb3NzOiAwLjUyMjQgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjUyMjQgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTY5LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41MTMwIC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDJtcy9zdGVwIC0gbG9zczogMC41MjEzIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMm1zL3N0ZXAgLSBsb3NzOiAwLjUyMTMgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCAxNzAvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjUzNzMgLSBhY2N1cmFjeTogMC42MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjc4dXMvc3RlcCAtIGxvc3M6IDAuNTIwMSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNTIwMSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxNzEvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjQyMjIgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNTY4dXMvc3RlcCAtIGxvc3M6IDAuNTE4OSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDQzbXMvc3RlcCAtIGxvc3M6IDAuNTE4OSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxNzIvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU0MzYgLSBhY2N1cmFjeTogMC43MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgM21zL3N0ZXAgLSBsb3NzOiAwLjUxNzggLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDIzbXMvc3RlcCAtIGxvc3M6IDAuNTE3OCAtIGFjY3VyYWN5OiAwLjY5MTdcbkVwb2NoIDE3My8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTg3MSAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA4ODh1cy9zdGVwIC0gbG9zczogMC41MTY2IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjBtcy9zdGVwIC0gbG9zczogMC41MTY2IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE3NC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTExMyAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2NTh1cy9zdGVwIC0gbG9zczogMC41MTU0IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MTU0IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE3NS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuMzg3NyAtIGFjY3VyYWN5OiAwLjg1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA3NTd1cy9zdGVwIC0gbG9zczogMC41MTQyIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MTQyIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE3Ni8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNTA1MyAtIGFjY3VyYWN5OiAwLjYwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA4Mzl1cy9zdGVwIC0gbG9zczogMC41MTMwIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MTMwIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE3Ny8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNDM0MSAtIGFjY3VyYWN5OiAwLjgwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2MzR1cy9zdGVwIC0gbG9zczogMC41MTE2IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MTE2IC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE3OC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNDEzNSAtIGFjY3VyYWN5OiAwLjcwMDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA2MDN1cy9zdGVwIC0gbG9zczogMC41MTAzIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMThtcy9zdGVwIC0gbG9zczogMC41MTAzIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE3OS8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNDY0MSAtIGFjY3VyYWN5OiAwLjY1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyA1NjN1cy9zdGVwIC0gbG9zczogMC41MDkxIC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMTltcy9zdGVwIC0gbG9zczogMC41MDkxIC0gYWNjdXJhY3k6IDAuNjkxNyBcbkVwb2NoIDE4MC8yMDBcblxuMS82IFs9PT09Pi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi5dIC0gRVRBOiAwcyAtIGxvc3M6IDAuNDkxNCAtIGFjY3VyYWN5OiAwLjc1MDBcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxbXMvc3RlcCAtIGxvc3M6IDAuNTA3NyAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjFtcy9zdGVwIC0gbG9zczogMC41MDc3IC0gYWNjdXJhY3k6IDAuNjkxN1xuRXBvY2ggMTgxLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC40NjgxIC0gYWNjdXJhY3k6IDAuNjUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDU3MnVzL3N0ZXAgLSBsb3NzOiAwLjUwNjUgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjUwNjUgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTgyLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC40MDAyIC0gYWNjdXJhY3k6IDAuNzAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDczOHVzL3N0ZXAgLSBsb3NzOiAwLjUwNTMgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjUwNTMgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTgzLzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC4zNjM4IC0gYWNjdXJhY3k6IDAuODUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDYxOHVzL3N0ZXAgLSBsb3NzOiAwLjUwNDAgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjUwNDAgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTg0LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC40MDYyIC0gYWNjdXJhY3k6IDAuODUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDY0NHVzL3N0ZXAgLSBsb3NzOiAwLjUwMjkgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjUwMjkgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTg1LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41MjUwIC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDY2MnVzL3N0ZXAgLSBsb3NzOiAwLjUwMTcgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjUwMTcgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTg2LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC42MzYzIC0gYWNjdXJhY3k6IDAuNTUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDY1NHVzL3N0ZXAgLSBsb3NzOiAwLjUwMDMgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOW1zL3N0ZXAgLSBsb3NzOiAwLjUwMDMgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTg3LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC4zODMwIC0gYWNjdXJhY3k6IDAuNzUwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDU1NXVzL3N0ZXAgLSBsb3NzOiAwLjQ5OTAgLSBhY2N1cmFjeTogMC42OTE3XG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxOG1zL3N0ZXAgLSBsb3NzOiAwLjQ5OTAgLSBhY2N1cmFjeTogMC42OTE3IFxuRXBvY2ggMTg4LzIwMFxuXG4xLzYgWz09PT0+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLl0gLSBFVEE6IDBzIC0gbG9zczogMC41ODkyIC0gYWNjdXJhY3k6IDAuNjAwMFxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDFtcy9zdGVwIC0gbG9zczogMC40OTc2IC0gYWNjdXJhY3k6IDAuNjkxN1xuXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXG42LzYgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAyMG1zL3N0ZXAgLSBsb3NzOiAwLjQ5NzYgLSBhY2N1cmFjeTogMC42OTE3XG5FcG9jaCAxODkvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjQ3MjIgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjI4dXMvc3RlcCAtIGxvc3M6IDAuNDk2MiAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNDk2MiAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxOTAvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjQxNTAgLSBhY2N1cmFjeTogMC44MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNTkydXMvc3RlcCAtIGxvc3M6IDAuNDk0OCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNDk0OCAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxOTEvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjQxNjcgLSBhY2N1cmFjeTogMC44MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgODU4dXMvc3RlcCAtIGxvc3M6IDAuNDkzMyAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNDkzMyAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxOTIvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjU5NTIgLSBhY2N1cmFjeTogMC42MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjcydXMvc3RlcCAtIGxvc3M6IDAuNDkxOCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNDkxOCAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxOTMvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjQ2MTQgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNTc3dXMvc3RlcCAtIGxvc3M6IDAuNDkwMSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNDkwMSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxOTQvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjYxNDYgLSBhY2N1cmFjeTogMC42MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjI1dXMvc3RlcCAtIGxvc3M6IDAuNDg4NSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE4bXMvc3RlcCAtIGxvc3M6IDAuNDg4NSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxOTUvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjUxODggLSBhY2N1cmFjeTogMC42NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNzAydXMvc3RlcCAtIGxvc3M6IDAuNDg3MCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNDg3MCAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxOTYvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjQ1NjIgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjE1dXMvc3RlcCAtIGxvc3M6IDAuNDg1NCAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE4bXMvc3RlcCAtIGxvc3M6IDAuNDg1NCAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxOTcvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjUyMDQgLSBhY2N1cmFjeTogMC42NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjgzdXMvc3RlcCAtIGxvc3M6IDAuNDgzOSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNDgzOSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxOTgvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjM4MjQgLSBhY2N1cmFjeTogMC43NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjAzdXMvc3RlcCAtIGxvc3M6IDAuNDgyNSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNDgyNSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAxOTkvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjUwNzQgLSBhY2N1cmFjeTogMC42MDAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgODU5dXMvc3RlcCAtIGxvc3M6IDAuNDgxMSAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNDgxMSAtIGFjY3VyYWN5OiAwLjY5MTcgXG5FcG9jaCAyMDAvMjAwXG5cbjEvNiBbPT09PT4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uXSAtIEVUQTogMHMgLSBsb3NzOiAwLjYxNDEgLSBhY2N1cmFjeTogMC41NTAwXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuNi82IFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgNjU3dXMvc3RlcCAtIGxvc3M6IDAuNDc5NyAtIGFjY3VyYWN5OiAwLjY5MTdcblxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcbjYvNiBbPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XSAtIDBzIDE5bXMvc3RlcCAtIGxvc3M6IDAuNDc5NyAtIGFjY3VyYWN5OiAwLjY5MTcgXG4ifQ== -->

Epoch 1/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.3146 - accuracy: 0.4500 6/6 [==============================] - 0s 632us/step - loss: 1.3092 - accuracy: 0.3333  6/6 [==============================] - 1s 85ms/step - loss: 1.3092 - accuracy: 0.3333 Epoch 2/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.1826 - accuracy: 0.3500 6/6 [==============================] - 0s 586us/step - loss: 1.2631 - accuracy: 0.3500  6/6 [==============================] - 0s 19ms/step - loss: 1.2631 - accuracy: 0.3500 Epoch 3/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.4383 - accuracy: 0.2000 6/6 [==============================] - 0s 3ms/step - loss: 1.2305 - accuracy: 0.3583  6/6 [==============================] - 0s 23ms/step - loss: 1.2305 - accuracy: 0.3583 Epoch 4/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.9543 - accuracy: 0.4500 6/6 [==============================] - 0s 2ms/step - loss: 1.2025 - accuracy: 0.3583  6/6 [==============================] - 0s 22ms/step - loss: 1.2025 - accuracy: 0.3583 Epoch 5/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.2216 - accuracy: 0.3500 6/6 [==============================] - 0s 1ms/step - loss: 1.1776 - accuracy: 0.3667  6/6 [==============================] - 0s 20ms/step - loss: 1.1776 - accuracy: 0.3667 Epoch 6/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.2356 - accuracy: 0.2000 6/6 [==============================] - 0s 754us/step - loss: 1.1545 - accuracy: 0.3667  6/6 [==============================] - 0s 19ms/step - loss: 1.1545 - accuracy: 0.3667 Epoch 7/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.8686 - accuracy: 0.5000 6/6 [==============================] - 0s 2ms/step - loss: 1.1328 - accuracy: 0.3667  6/6 [==============================] - 0s 22ms/step - loss: 1.1328 - accuracy: 0.3667 Epoch 8/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.1982 - accuracy: 0.1500 6/6 [==============================] - 0s 522us/step - loss: 1.1122 - accuracy: 0.3667  6/6 [==============================] - 0s 18ms/step - loss: 1.1122 - accuracy: 0.3667 Epoch 9/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.2572 - accuracy: 0.1500 6/6 [==============================] - 0s 581us/step - loss: 1.0929 - accuracy: 0.3750  6/6 [==============================] - 0s 20ms/step - loss: 1.0929 - accuracy: 0.3750 Epoch 10/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.0138 - accuracy: 0.3500 6/6 [==============================] - 0s 838us/step - loss: 1.0745 - accuracy: 0.3833  6/6 [==============================] - 0s 19ms/step - loss: 1.0745 - accuracy: 0.3833 Epoch 11/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.0590 - accuracy: 0.3000 6/6 [==============================] - 0s 3ms/step - loss: 1.0570 - accuracy: 0.3833  6/6 [==============================] - 0s 23ms/step - loss: 1.0570 - accuracy: 0.3833 Epoch 12/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.0460 - accuracy: 0.3000 6/6 [==============================] - 0s 2ms/step - loss: 1.0403 - accuracy: 0.3833  6/6 [==============================] - 0s 23ms/step - loss: 1.0403 - accuracy: 0.3833 Epoch 13/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.1162 - accuracy: 0.2500 6/6 [==============================] - 0s 2ms/step - loss: 1.0245 - accuracy: 0.3917  6/6 [==============================] - 0s 21ms/step - loss: 1.0245 - accuracy: 0.3917 Epoch 14/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.8707 - accuracy: 0.5000 6/6 [==============================] - 0s 3ms/step - loss: 1.0090 - accuracy: 0.4083  6/6 [==============================] - 0s 23ms/step - loss: 1.0090 - accuracy: 0.4083 Epoch 15/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.9713 - accuracy: 0.4000 6/6 [==============================] - 0s 1ms/step - loss: 0.9941 - accuracy: 0.4083  6/6 [==============================] - 0s 20ms/step - loss: 0.9941 - accuracy: 0.4083 Epoch 16/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.9151 - accuracy: 0.5000 6/6 [==============================] - 0s 579us/step - loss: 0.9794 - accuracy: 0.4083  6/6 [==============================] - 0s 18ms/step - loss: 0.9794 - accuracy: 0.4083 Epoch 17/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.8932 - accuracy: 0.5000 6/6 [==============================] - 0s 595us/step - loss: 0.9656 - accuracy: 0.4083  6/6 [==============================] - 0s 19ms/step - loss: 0.9656 - accuracy: 0.4083 Epoch 18/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.1059 - accuracy: 0.3000 6/6 [==============================] - 0s 2ms/step - loss: 0.9522 - accuracy: 0.4083  6/6 [==============================] - 0s 22ms/step - loss: 0.9522 - accuracy: 0.4083 Epoch 19/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.9085 - accuracy: 0.4500 6/6 [==============================] - 0s 2ms/step - loss: 0.9392 - accuracy: 0.4333  6/6 [==============================] - 0s 21ms/step - loss: 0.9392 - accuracy: 0.4333 Epoch 20/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.8883 - accuracy: 0.4500 6/6 [==============================] - 0s 790us/step - loss: 0.9266 - accuracy: 0.4500  6/6 [==============================] - 0s 19ms/step - loss: 0.9266 - accuracy: 0.4500 Epoch 21/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.0031 - accuracy: 0.4500 6/6 [==============================] - 0s 1ms/step - loss: 0.9145 - accuracy: 0.4417  6/6 [==============================] - 0s 20ms/step - loss: 0.9145 - accuracy: 0.4417 Epoch 22/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7275 - accuracy: 0.5500 6/6 [==============================] - 0s 2ms/step - loss: 0.9029 - accuracy: 0.4583  6/6 [==============================] - 0s 22ms/step - loss: 0.9029 - accuracy: 0.4583 Epoch 23/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.9503 - accuracy: 0.4000 6/6 [==============================] - 0s 1ms/step - loss: 0.8918 - accuracy: 0.4500  6/6 [==============================] - 0s 21ms/step - loss: 0.8918 - accuracy: 0.4500 Epoch 24/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7148 - accuracy: 0.5000 6/6 [==============================] - 0s 625us/step - loss: 0.8813 - accuracy: 0.4500  6/6 [==============================] - 0s 18ms/step - loss: 0.8813 - accuracy: 0.4500 Epoch 25/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.2577 - accuracy: 0.3000 6/6 [==============================] - 0s 627us/step - loss: 0.8710 - accuracy: 0.4500  6/6 [==============================] - 0s 19ms/step - loss: 0.8710 - accuracy: 0.4500 Epoch 26/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7393 - accuracy: 0.6500 6/6 [==============================] - 0s 552us/step - loss: 0.8613 - accuracy: 0.4500  6/6 [==============================] - 0s 18ms/step - loss: 0.8613 - accuracy: 0.4500 Epoch 27/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7891 - accuracy: 0.4500 6/6 [==============================] - 0s 786us/step - loss: 0.8516 - accuracy: 0.4583  6/6 [==============================] - 0s 19ms/step - loss: 0.8516 - accuracy: 0.4583 Epoch 28/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7014 - accuracy: 0.5000 6/6 [==============================] - 0s 1ms/step - loss: 0.8423 - accuracy: 0.4667  6/6 [==============================] - 0s 21ms/step - loss: 0.8423 - accuracy: 0.4667 Epoch 29/200

1/6 [====>…………………….] - ETA: 0s - loss: 1.0145 - accuracy: 0.4000 6/6 [==============================] - 0s 1ms/step - loss: 0.8333 - accuracy: 0.4917  6/6 [==============================] - 0s 20ms/step - loss: 0.8333 - accuracy: 0.4917 Epoch 30/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.9247 - accuracy: 0.4500 6/6 [==============================] - 0s 2ms/step - loss: 0.8244 - accuracy: 0.5083  6/6 [==============================] - 0s 21ms/step - loss: 0.8244 - accuracy: 0.5083 Epoch 31/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6738 - accuracy: 0.6500 6/6 [==============================] - 0s 1ms/step - loss: 0.8158 - accuracy: 0.5083  6/6 [==============================] - 0s 20ms/step - loss: 0.8158 - accuracy: 0.5083 Epoch 32/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.8393 - accuracy: 0.5500 6/6 [==============================] - 0s 629us/step - loss: 0.8075 - accuracy: 0.5083  6/6 [==============================] - 0s 19ms/step - loss: 0.8075 - accuracy: 0.5083 Epoch 33/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6671 - accuracy: 0.5000 6/6 [==============================] - 0s 754us/step - loss: 0.7995 - accuracy: 0.5000  6/6 [==============================] - 0s 19ms/step - loss: 0.7995 - accuracy: 0.5000 Epoch 34/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.8134 - accuracy: 0.4500 6/6 [==============================] - 0s 2ms/step - loss: 0.7917 - accuracy: 0.4917  6/6 [==============================] - 0s 22ms/step - loss: 0.7917 - accuracy: 0.4917 Epoch 35/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6892 - accuracy: 0.5500 6/6 [==============================] - 0s 3ms/step - loss: 0.7845 - accuracy: 0.5083  6/6 [==============================] - 0s 23ms/step - loss: 0.7845 - accuracy: 0.5083 Epoch 36/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6879 - accuracy: 0.6000 6/6 [==============================] - 0s 585us/step - loss: 0.7772 - accuracy: 0.5333  6/6 [==============================] - 0s 19ms/step - loss: 0.7772 - accuracy: 0.5333 Epoch 37/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6998 - accuracy: 0.6000 6/6 [==============================] - 0s 2ms/step - loss: 0.7703 - accuracy: 0.5500  6/6 [==============================] - 0s 23ms/step - loss: 0.7703 - accuracy: 0.5500 Epoch 38/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6709 - accuracy: 0.7000 6/6 [==============================] - 0s 2ms/step - loss: 0.7634 - accuracy: 0.5500  6/6 [==============================] - 0s 22ms/step - loss: 0.7634 - accuracy: 0.5500 Epoch 39/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7880 - accuracy: 0.6000 6/6 [==============================] - 0s 2ms/step - loss: 0.7567 - accuracy: 0.5750  6/6 [==============================] - 0s 22ms/step - loss: 0.7567 - accuracy: 0.5750 Epoch 40/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7314 - accuracy: 0.7000 6/6 [==============================] - 0s 617us/step - loss: 0.7501 - accuracy: 0.5833  6/6 [==============================] - 0s 19ms/step - loss: 0.7501 - accuracy: 0.5833 Epoch 41/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7269 - accuracy: 0.7500 6/6 [==============================] - 0s 618us/step - loss: 0.7439 - accuracy: 0.5833  6/6 [==============================] - 0s 19ms/step - loss: 0.7439 - accuracy: 0.5833 Epoch 42/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7133 - accuracy: 0.6000 6/6 [==============================] - 0s 2ms/step - loss: 0.7378 - accuracy: 0.5833  6/6 [==============================] - 0s 21ms/step - loss: 0.7378 - accuracy: 0.5833 Epoch 43/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6314 - accuracy: 0.5500 6/6 [==============================] - 0s 702us/step - loss: 0.7320 - accuracy: 0.5833  6/6 [==============================] - 0s 19ms/step - loss: 0.7320 - accuracy: 0.5833 Epoch 44/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6208 - accuracy: 0.5500 6/6 [==============================] - 0s 2ms/step - loss: 0.7264 - accuracy: 0.6000  6/6 [==============================] - 0s 22ms/step - loss: 0.7264 - accuracy: 0.6000 Epoch 45/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4508 - accuracy: 0.7000 6/6 [==============================] - 0s 847us/step - loss: 0.7211 - accuracy: 0.5917  6/6 [==============================] - 0s 21ms/step - loss: 0.7211 - accuracy: 0.5917 Epoch 46/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7018 - accuracy: 0.6500 6/6 [==============================] - 0s 617us/step - loss: 0.7158 - accuracy: 0.5917  6/6 [==============================] - 0s 19ms/step - loss: 0.7158 - accuracy: 0.5917 Epoch 47/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6888 - accuracy: 0.5500 6/6 [==============================] - 0s 592us/step - loss: 0.7108 - accuracy: 0.6000  6/6 [==============================] - 0s 19ms/step - loss: 0.7108 - accuracy: 0.6000 Epoch 48/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7136 - accuracy: 0.6000 6/6 [==============================] - 0s 728us/step - loss: 0.7059 - accuracy: 0.6167  6/6 [==============================] - 0s 19ms/step - loss: 0.7059 - accuracy: 0.6167 Epoch 49/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7264 - accuracy: 0.6000 6/6 [==============================] - 0s 761us/step - loss: 0.7011 - accuracy: 0.6250  6/6 [==============================] - 0s 19ms/step - loss: 0.7011 - accuracy: 0.6250 Epoch 50/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7306 - accuracy: 0.7500 6/6 [==============================] - 0s 783us/step - loss: 0.6966 - accuracy: 0.6333  6/6 [==============================] - 0s 19ms/step - loss: 0.6966 - accuracy: 0.6333 Epoch 51/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4879 - accuracy: 0.7500 6/6 [==============================] - 0s 835us/step - loss: 0.6925 - accuracy: 0.6333  6/6 [==============================] - 0s 19ms/step - loss: 0.6925 - accuracy: 0.6333 Epoch 52/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6134 - accuracy: 0.7500 6/6 [==============================] - 0s 2ms/step - loss: 0.6882 - accuracy: 0.6417  6/6 [==============================] - 0s 22ms/step - loss: 0.6882 - accuracy: 0.6417 Epoch 53/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5804 - accuracy: 0.7000 6/6 [==============================] - 0s 1ms/step - loss: 0.6841 - accuracy: 0.6417  6/6 [==============================] - 0s 20ms/step - loss: 0.6841 - accuracy: 0.6417 Epoch 54/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5657 - accuracy: 0.8000 6/6 [==============================] - 0s 3ms/step - loss: 0.6803 - accuracy: 0.6583  6/6 [==============================] - 0s 24ms/step - loss: 0.6803 - accuracy: 0.6583 Epoch 55/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.8458 - accuracy: 0.6000 6/6 [==============================] - 0s 2ms/step - loss: 0.6765 - accuracy: 0.6583  6/6 [==============================] - 0s 21ms/step - loss: 0.6765 - accuracy: 0.6583 Epoch 56/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.8174 - accuracy: 0.5500 6/6 [==============================] - 0s 597us/step - loss: 0.6729 - accuracy: 0.6583  6/6 [==============================] - 0s 18ms/step - loss: 0.6729 - accuracy: 0.6583 Epoch 57/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6018 - accuracy: 0.5000 6/6 [==============================] - 0s 695us/step - loss: 0.6695 - accuracy: 0.6583  6/6 [==============================] - 0s 19ms/step - loss: 0.6695 - accuracy: 0.6583 Epoch 58/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6955 - accuracy: 0.6000 6/6 [==============================] - 0s 2ms/step - loss: 0.6661 - accuracy: 0.6583  6/6 [==============================] - 0s 21ms/step - loss: 0.6661 - accuracy: 0.6583 Epoch 59/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7480 - accuracy: 0.8000 6/6 [==============================] - 0s 649us/step - loss: 0.6630 - accuracy: 0.6583  6/6 [==============================] - 0s 19ms/step - loss: 0.6630 - accuracy: 0.6583 Epoch 60/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6712 - accuracy: 0.7000 6/6 [==============================] - 0s 1ms/step - loss: 0.6598 - accuracy: 0.6583  6/6 [==============================] - 0s 21ms/step - loss: 0.6598 - accuracy: 0.6583 Epoch 61/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7638 - accuracy: 0.7000 6/6 [==============================] - 0s 2ms/step - loss: 0.6568 - accuracy: 0.6583  6/6 [==============================] - 0s 22ms/step - loss: 0.6568 - accuracy: 0.6583 Epoch 62/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7733 - accuracy: 0.7000 6/6 [==============================] - 0s 1ms/step - loss: 0.6539 - accuracy: 0.6583  6/6 [==============================] - 0s 21ms/step - loss: 0.6539 - accuracy: 0.6583 Epoch 63/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7415 - accuracy: 0.7500 6/6 [==============================] - 0s 3ms/step - loss: 0.6510 - accuracy: 0.6583  6/6 [==============================] - 0s 23ms/step - loss: 0.6510 - accuracy: 0.6583 Epoch 64/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6543 - accuracy: 0.7000 6/6 [==============================] - 0s 579us/step - loss: 0.6482 - accuracy: 0.6583  6/6 [==============================] - 0s 18ms/step - loss: 0.6482 - accuracy: 0.6583 Epoch 65/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6206 - accuracy: 0.6500 6/6 [==============================] - 0s 624us/step - loss: 0.6454 - accuracy: 0.6583  6/6 [==============================] - 0s 19ms/step - loss: 0.6454 - accuracy: 0.6583 Epoch 66/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6605 - accuracy: 0.6000 6/6 [==============================] - 0s 2ms/step - loss: 0.6427 - accuracy: 0.6583  6/6 [==============================] - 0s 22ms/step - loss: 0.6427 - accuracy: 0.6583 Epoch 67/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5182 - accuracy: 0.6500 6/6 [==============================] - 0s 2ms/step - loss: 0.6403 - accuracy: 0.6583  6/6 [==============================] - 0s 22ms/step - loss: 0.6403 - accuracy: 0.6583 Epoch 68/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6439 - accuracy: 0.8000 6/6 [==============================] - 0s 1ms/step - loss: 0.6379 - accuracy: 0.6583  6/6 [==============================] - 0s 23ms/step - loss: 0.6379 - accuracy: 0.6583 Epoch 69/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5915 - accuracy: 0.7500 6/6 [==============================] - 0s 2ms/step - loss: 0.6357 - accuracy: 0.6667  6/6 [==============================] - 0s 22ms/step - loss: 0.6357 - accuracy: 0.6667 Epoch 70/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6438 - accuracy: 0.8000 6/6 [==============================] - 0s 1ms/step - loss: 0.6336 - accuracy: 0.6667  6/6 [==============================] - 0s 21ms/step - loss: 0.6336 - accuracy: 0.6667 Epoch 71/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5953 - accuracy: 0.7500 6/6 [==============================] - 0s 1ms/step - loss: 0.6316 - accuracy: 0.6667  6/6 [==============================] - 0s 21ms/step - loss: 0.6316 - accuracy: 0.6667 Epoch 72/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7936 - accuracy: 0.5500 6/6 [==============================] - 0s 585us/step - loss: 0.6296 - accuracy: 0.6667  6/6 [==============================] - 0s 19ms/step - loss: 0.6296 - accuracy: 0.6667 Epoch 73/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5576 - accuracy: 0.6500 6/6 [==============================] - 0s 1ms/step - loss: 0.6275 - accuracy: 0.6667  6/6 [==============================] - 0s 21ms/step - loss: 0.6275 - accuracy: 0.6667 Epoch 74/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5583 - accuracy: 0.6500 6/6 [==============================] - 0s 721us/step - loss: 0.6255 - accuracy: 0.6833  6/6 [==============================] - 0s 19ms/step - loss: 0.6255 - accuracy: 0.6833 Epoch 75/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7650 - accuracy: 0.6500 6/6 [==============================] - 0s 1ms/step - loss: 0.6236 - accuracy: 0.6833  6/6 [==============================] - 0s 20ms/step - loss: 0.6236 - accuracy: 0.6833 Epoch 76/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5352 - accuracy: 0.8000 6/6 [==============================] - 0s 1ms/step - loss: 0.6217 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.6217 - accuracy: 0.6917 Epoch 77/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5358 - accuracy: 0.8500 6/6 [==============================] - 0s 1ms/step - loss: 0.6198 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.6198 - accuracy: 0.6917 Epoch 78/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6879 - accuracy: 0.5500 6/6 [==============================] - 0s 713us/step - loss: 0.6180 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.6180 - accuracy: 0.6917 Epoch 79/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5994 - accuracy: 0.6000 6/6 [==============================] - 0s 3ms/step - loss: 0.6164 - accuracy: 0.6917  6/6 [==============================] - 0s 23ms/step - loss: 0.6164 - accuracy: 0.6917 Epoch 80/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7281 - accuracy: 0.6000 6/6 [==============================] - 0s 740us/step - loss: 0.6147 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.6147 - accuracy: 0.6917 Epoch 81/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5808 - accuracy: 0.7000 6/6 [==============================] - 0s 648us/step - loss: 0.6131 - accuracy: 0.6917  6/6 [==============================] - 0s 47ms/step - loss: 0.6131 - accuracy: 0.6917 Epoch 82/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5839 - accuracy: 0.7000 6/6 [==============================] - 0s 2ms/step - loss: 0.6115 - accuracy: 0.6917  6/6 [==============================] - 0s 22ms/step - loss: 0.6115 - accuracy: 0.6917 Epoch 83/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6340 - accuracy: 0.6000 6/6 [==============================] - 0s 532us/step - loss: 0.6100 - accuracy: 0.6917  6/6 [==============================] - 0s 18ms/step - loss: 0.6100 - accuracy: 0.6917 Epoch 84/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6165 - accuracy: 0.7500 6/6 [==============================] - 0s 3ms/step - loss: 0.6085 - accuracy: 0.6917  6/6 [==============================] - 0s 23ms/step - loss: 0.6085 - accuracy: 0.6917 Epoch 85/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6126 - accuracy: 0.7500 6/6 [==============================] - 0s 1ms/step - loss: 0.6070 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.6070 - accuracy: 0.6917 Epoch 86/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5778 - accuracy: 0.7000 6/6 [==============================] - 0s 777us/step - loss: 0.6056 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.6056 - accuracy: 0.6917 Epoch 87/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5722 - accuracy: 0.7500 6/6 [==============================] - 0s 588us/step - loss: 0.6042 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.6042 - accuracy: 0.6917 Epoch 88/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7331 - accuracy: 0.7500 6/6 [==============================] - 0s 2ms/step - loss: 0.6029 - accuracy: 0.6917  6/6 [==============================] - 0s 23ms/step - loss: 0.6029 - accuracy: 0.6917 Epoch 89/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5736 - accuracy: 0.7000 6/6 [==============================] - 0s 1ms/step - loss: 0.6015 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.6015 - accuracy: 0.6917 Epoch 90/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5786 - accuracy: 0.6500 6/6 [==============================] - 0s 1ms/step - loss: 0.6002 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.6002 - accuracy: 0.6917 Epoch 91/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6256 - accuracy: 0.6000 6/6 [==============================] - 0s 2ms/step - loss: 0.5988 - accuracy: 0.6917  6/6 [==============================] - 0s 22ms/step - loss: 0.5988 - accuracy: 0.6917 Epoch 92/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6103 - accuracy: 0.7000 6/6 [==============================] - 0s 1ms/step - loss: 0.5975 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5975 - accuracy: 0.6917 Epoch 93/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7444 - accuracy: 0.6000 6/6 [==============================] - 0s 1ms/step - loss: 0.5963 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5963 - accuracy: 0.6917 Epoch 94/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6956 - accuracy: 0.6500 6/6 [==============================] - 0s 717us/step - loss: 0.5950 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5950 - accuracy: 0.6917 Epoch 95/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5259 - accuracy: 0.7000 6/6 [==============================] - 0s 700us/step - loss: 0.5938 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5938 - accuracy: 0.6917 Epoch 96/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7107 - accuracy: 0.5000 6/6 [==============================] - 0s 1ms/step - loss: 0.5926 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5926 - accuracy: 0.6917 Epoch 97/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4441 - accuracy: 0.7000 6/6 [==============================] - 0s 902us/step - loss: 0.5914 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5914 - accuracy: 0.6917 Epoch 98/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5224 - accuracy: 0.7000 6/6 [==============================] - 0s 1ms/step - loss: 0.5903 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5903 - accuracy: 0.6917 Epoch 99/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6222 - accuracy: 0.8500 6/6 [==============================] - 0s 962us/step - loss: 0.5892 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5892 - accuracy: 0.6917 Epoch 100/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7337 - accuracy: 0.6000 6/6 [==============================] - 0s 2ms/step - loss: 0.5881 - accuracy: 0.6917  6/6 [==============================] - 0s 23ms/step - loss: 0.5881 - accuracy: 0.6917 Epoch 101/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5195 - accuracy: 0.7000 6/6 [==============================] - 0s 718us/step - loss: 0.5871 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5871 - accuracy: 0.6917 Epoch 102/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6514 - accuracy: 0.6000 6/6 [==============================] - 0s 656us/step - loss: 0.5861 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5861 - accuracy: 0.6917 Epoch 103/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5375 - accuracy: 0.8500 6/6 [==============================] - 0s 596us/step - loss: 0.5851 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5851 - accuracy: 0.6917 Epoch 104/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.3722 - accuracy: 0.9000 6/6 [==============================] - 0s 586us/step - loss: 0.5841 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5841 - accuracy: 0.6917 Epoch 105/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6097 - accuracy: 0.6000 6/6 [==============================] - 0s 1ms/step - loss: 0.5832 - accuracy: 0.6917  6/6 [==============================] - 0s 21ms/step - loss: 0.5832 - accuracy: 0.6917 Epoch 106/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6803 - accuracy: 0.6500 6/6 [==============================] - 0s 944us/step - loss: 0.5822 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5822 - accuracy: 0.6917 Epoch 107/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6398 - accuracy: 0.6500 6/6 [==============================] - 0s 861us/step - loss: 0.5814 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5814 - accuracy: 0.6917 Epoch 108/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5460 - accuracy: 0.7500 6/6 [==============================] - 0s 1ms/step - loss: 0.5803 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5803 - accuracy: 0.6917 Epoch 109/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5922 - accuracy: 0.7000 6/6 [==============================] - 0s 805us/step - loss: 0.5794 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5794 - accuracy: 0.6917 Epoch 110/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6299 - accuracy: 0.7000 6/6 [==============================] - 0s 1ms/step - loss: 0.5784 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5784 - accuracy: 0.6917 Epoch 111/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.7738 - accuracy: 0.5000 6/6 [==============================] - 0s 678us/step - loss: 0.5775 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5775 - accuracy: 0.6917 Epoch 112/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6669 - accuracy: 0.7000 6/6 [==============================] - 0s 587us/step - loss: 0.5765 - accuracy: 0.6917  6/6 [==============================] - 0s 18ms/step - loss: 0.5765 - accuracy: 0.6917 Epoch 113/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4115 - accuracy: 0.8500 6/6 [==============================] - 0s 2ms/step - loss: 0.5756 - accuracy: 0.6917  6/6 [==============================] - 0s 22ms/step - loss: 0.5756 - accuracy: 0.6917 Epoch 114/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5871 - accuracy: 0.7000 6/6 [==============================] - 0s 697us/step - loss: 0.5746 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5746 - accuracy: 0.6917 Epoch 115/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5014 - accuracy: 0.7500 6/6 [==============================] - 0s 2ms/step - loss: 0.5737 - accuracy: 0.6917  6/6 [==============================] - 0s 22ms/step - loss: 0.5737 - accuracy: 0.6917 Epoch 116/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6300 - accuracy: 0.6500 6/6 [==============================] - 0s 657us/step - loss: 0.5727 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5727 - accuracy: 0.6917 Epoch 117/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4466 - accuracy: 0.8500 6/6 [==============================] - 0s 3ms/step - loss: 0.5718 - accuracy: 0.6917  6/6 [==============================] - 0s 24ms/step - loss: 0.5718 - accuracy: 0.6917 Epoch 118/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5294 - accuracy: 0.8000 6/6 [==============================] - 0s 2ms/step - loss: 0.5710 - accuracy: 0.6917  6/6 [==============================] - 0s 22ms/step - loss: 0.5710 - accuracy: 0.6917 Epoch 119/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5448 - accuracy: 0.7000 6/6 [==============================] - 0s 702us/step - loss: 0.5700 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5700 - accuracy: 0.6917 Epoch 120/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6877 - accuracy: 0.7500 6/6 [==============================] - 0s 584us/step - loss: 0.5691 - accuracy: 0.6917  6/6 [==============================] - 0s 18ms/step - loss: 0.5691 - accuracy: 0.6917 Epoch 121/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6489 - accuracy: 0.7500 6/6 [==============================] - 0s 765us/step - loss: 0.5682 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5682 - accuracy: 0.6917 Epoch 122/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5650 - accuracy: 0.5500 6/6 [==============================] - 0s 1ms/step - loss: 0.5674 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5674 - accuracy: 0.6917 Epoch 123/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6406 - accuracy: 0.5500 6/6 [==============================] - 0s 687us/step - loss: 0.5665 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5665 - accuracy: 0.6917 Epoch 124/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6143 - accuracy: 0.7000 6/6 [==============================] - 0s 989us/step - loss: 0.5655 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5655 - accuracy: 0.6917 Epoch 125/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6083 - accuracy: 0.7500 6/6 [==============================] - 0s 848us/step - loss: 0.5646 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5646 - accuracy: 0.6917 Epoch 126/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6228 - accuracy: 0.6500 6/6 [==============================] - 0s 588us/step - loss: 0.5637 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5637 - accuracy: 0.6917 Epoch 127/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5465 - accuracy: 0.6500 6/6 [==============================] - 0s 612us/step - loss: 0.5628 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5628 - accuracy: 0.6917 Epoch 128/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5298 - accuracy: 0.7500 6/6 [==============================] - 0s 570us/step - loss: 0.5619 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5619 - accuracy: 0.6917 Epoch 129/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4281 - accuracy: 0.8500 6/6 [==============================] - 0s 935us/step - loss: 0.5611 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5611 - accuracy: 0.6917 Epoch 130/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6695 - accuracy: 0.5500 6/6 [==============================] - 0s 601us/step - loss: 0.5601 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5601 - accuracy: 0.6917 Epoch 131/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5811 - accuracy: 0.6500 6/6 [==============================] - 0s 962us/step - loss: 0.5593 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5593 - accuracy: 0.6917 Epoch 132/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6018 - accuracy: 0.7500 6/6 [==============================] - 0s 689us/step - loss: 0.5584 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5584 - accuracy: 0.6917 Epoch 133/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6543 - accuracy: 0.6500 6/6 [==============================] - 0s 1ms/step - loss: 0.5575 - accuracy: 0.6917  6/6 [==============================] - 0s 21ms/step - loss: 0.5575 - accuracy: 0.6917 Epoch 134/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4383 - accuracy: 0.8000 6/6 [==============================] - 0s 693us/step - loss: 0.5565 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5565 - accuracy: 0.6917 Epoch 135/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6316 - accuracy: 0.7500 6/6 [==============================] - 0s 974us/step - loss: 0.5556 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5556 - accuracy: 0.6917 Epoch 136/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5152 - accuracy: 0.8000 6/6 [==============================] - 0s 623us/step - loss: 0.5547 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5547 - accuracy: 0.6917 Epoch 137/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6035 - accuracy: 0.6500 6/6 [==============================] - 0s 615us/step - loss: 0.5538 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5538 - accuracy: 0.6917 Epoch 138/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5472 - accuracy: 0.6000 6/6 [==============================] - 0s 1ms/step - loss: 0.5529 - accuracy: 0.6917  6/6 [==============================] - 0s 21ms/step - loss: 0.5529 - accuracy: 0.6917 Epoch 139/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6686 - accuracy: 0.5000 6/6 [==============================] - 0s 809us/step - loss: 0.5520 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5520 - accuracy: 0.6917 Epoch 140/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5201 - accuracy: 0.5000 6/6 [==============================] - 0s 1ms/step - loss: 0.5511 - accuracy: 0.6917  6/6 [==============================] - 0s 21ms/step - loss: 0.5511 - accuracy: 0.6917 Epoch 141/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6928 - accuracy: 0.6000 6/6 [==============================] - 0s 720us/step - loss: 0.5501 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5501 - accuracy: 0.6917 Epoch 142/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5260 - accuracy: 0.8500 6/6 [==============================] - 0s 1ms/step - loss: 0.5494 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5494 - accuracy: 0.6917 Epoch 143/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6178 - accuracy: 0.6000 6/6 [==============================] - 0s 737us/step - loss: 0.5484 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5484 - accuracy: 0.6917 Epoch 144/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4089 - accuracy: 0.7000 6/6 [==============================] - 0s 668us/step - loss: 0.5475 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5475 - accuracy: 0.6917 Epoch 145/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5860 - accuracy: 0.5500 6/6 [==============================] - 0s 610us/step - loss: 0.5465 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5465 - accuracy: 0.6917 Epoch 146/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5515 - accuracy: 0.7500 6/6 [==============================] - 0s 675us/step - loss: 0.5456 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5456 - accuracy: 0.6917 Epoch 147/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5169 - accuracy: 0.7500 6/6 [==============================] - 0s 654us/step - loss: 0.5446 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5446 - accuracy: 0.6917 Epoch 148/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5611 - accuracy: 0.7000 6/6 [==============================] - 0s 598us/step - loss: 0.5436 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5436 - accuracy: 0.6917 Epoch 149/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4876 - accuracy: 0.7000 6/6 [==============================] - 0s 838us/step - loss: 0.5427 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5427 - accuracy: 0.6917 Epoch 150/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5597 - accuracy: 0.6500 6/6 [==============================] - 0s 1ms/step - loss: 0.5418 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5418 - accuracy: 0.6917 Epoch 151/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6531 - accuracy: 0.6500 6/6 [==============================] - 0s 904us/step - loss: 0.5408 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5408 - accuracy: 0.6917 Epoch 152/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4758 - accuracy: 0.7500 6/6 [==============================] - 0s 804us/step - loss: 0.5399 - accuracy: 0.6917  6/6 [==============================] - 0s 21ms/step - loss: 0.5399 - accuracy: 0.6917 Epoch 153/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6072 - accuracy: 0.5500 6/6 [==============================] - 0s 645us/step - loss: 0.5389 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5389 - accuracy: 0.6917 Epoch 154/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5891 - accuracy: 0.7000 6/6 [==============================] - 0s 605us/step - loss: 0.5379 - accuracy: 0.6917  6/6 [==============================] - 0s 18ms/step - loss: 0.5379 - accuracy: 0.6917 Epoch 155/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5705 - accuracy: 0.6000 6/6 [==============================] - 0s 2ms/step - loss: 0.5368 - accuracy: 0.6917  6/6 [==============================] - 0s 22ms/step - loss: 0.5368 - accuracy: 0.6917 Epoch 156/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5169 - accuracy: 0.7000 6/6 [==============================] - 0s 830us/step - loss: 0.5357 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5357 - accuracy: 0.6917 Epoch 157/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4144 - accuracy: 0.7500 6/6 [==============================] - 0s 926us/step - loss: 0.5346 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5346 - accuracy: 0.6917 Epoch 158/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5302 - accuracy: 0.6000 6/6 [==============================] - 0s 677us/step - loss: 0.5336 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5336 - accuracy: 0.6917 Epoch 159/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5873 - accuracy: 0.6500 6/6 [==============================] - 0s 713us/step - loss: 0.5325 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5325 - accuracy: 0.6917 Epoch 160/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5733 - accuracy: 0.7500 6/6 [==============================] - 0s 598us/step - loss: 0.5314 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5314 - accuracy: 0.6917 Epoch 161/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4812 - accuracy: 0.7000 6/6 [==============================] - 0s 721us/step - loss: 0.5303 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5303 - accuracy: 0.6917 Epoch 162/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6660 - accuracy: 0.5500 6/6 [==============================] - 0s 591us/step - loss: 0.5292 - accuracy: 0.6917  6/6 [==============================] - 0s 18ms/step - loss: 0.5292 - accuracy: 0.6917 Epoch 163/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5114 - accuracy: 0.7000 6/6 [==============================] - 0s 579us/step - loss: 0.5281 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5281 - accuracy: 0.6917 Epoch 164/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6130 - accuracy: 0.6000 6/6 [==============================] - 0s 597us/step - loss: 0.5270 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5270 - accuracy: 0.6917 Epoch 165/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5206 - accuracy: 0.6500 6/6 [==============================] - 0s 814us/step - loss: 0.5259 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5259 - accuracy: 0.6917 Epoch 166/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5998 - accuracy: 0.7500 6/6 [==============================] - 0s 1ms/step - loss: 0.5248 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5248 - accuracy: 0.6917 Epoch 167/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5556 - accuracy: 0.5500 6/6 [==============================] - 0s 840us/step - loss: 0.5236 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5236 - accuracy: 0.6917 Epoch 168/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4537 - accuracy: 0.6000 6/6 [==============================] - 0s 744us/step - loss: 0.5224 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5224 - accuracy: 0.6917 Epoch 169/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5130 - accuracy: 0.7000 6/6 [==============================] - 0s 2ms/step - loss: 0.5213 - accuracy: 0.6917  6/6 [==============================] - 0s 22ms/step - loss: 0.5213 - accuracy: 0.6917 Epoch 170/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5373 - accuracy: 0.6000 6/6 [==============================] - 0s 678us/step - loss: 0.5201 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5201 - accuracy: 0.6917 Epoch 171/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4222 - accuracy: 0.7500 6/6 [==============================] - 0s 568us/step - loss: 0.5189 - accuracy: 0.6917  6/6 [==============================] - 0s 43ms/step - loss: 0.5189 - accuracy: 0.6917 Epoch 172/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5436 - accuracy: 0.7000 6/6 [==============================] - 0s 3ms/step - loss: 0.5178 - accuracy: 0.6917  6/6 [==============================] - 0s 23ms/step - loss: 0.5178 - accuracy: 0.6917 Epoch 173/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5871 - accuracy: 0.6000 6/6 [==============================] - 0s 888us/step - loss: 0.5166 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.5166 - accuracy: 0.6917 Epoch 174/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5113 - accuracy: 0.7000 6/6 [==============================] - 0s 658us/step - loss: 0.5154 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5154 - accuracy: 0.6917 Epoch 175/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.3877 - accuracy: 0.8500 6/6 [==============================] - 0s 757us/step - loss: 0.5142 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5142 - accuracy: 0.6917 Epoch 176/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5053 - accuracy: 0.6000 6/6 [==============================] - 0s 839us/step - loss: 0.5130 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5130 - accuracy: 0.6917 Epoch 177/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4341 - accuracy: 0.8000 6/6 [==============================] - 0s 634us/step - loss: 0.5116 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5116 - accuracy: 0.6917 Epoch 178/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4135 - accuracy: 0.7000 6/6 [==============================] - 0s 603us/step - loss: 0.5103 - accuracy: 0.6917  6/6 [==============================] - 0s 18ms/step - loss: 0.5103 - accuracy: 0.6917 Epoch 179/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4641 - accuracy: 0.6500 6/6 [==============================] - 0s 563us/step - loss: 0.5091 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5091 - accuracy: 0.6917 Epoch 180/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4914 - accuracy: 0.7500 6/6 [==============================] - 0s 1ms/step - loss: 0.5077 - accuracy: 0.6917  6/6 [==============================] - 0s 21ms/step - loss: 0.5077 - accuracy: 0.6917 Epoch 181/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4681 - accuracy: 0.6500 6/6 [==============================] - 0s 572us/step - loss: 0.5065 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5065 - accuracy: 0.6917 Epoch 182/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4002 - accuracy: 0.7000 6/6 [==============================] - 0s 738us/step - loss: 0.5053 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5053 - accuracy: 0.6917 Epoch 183/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.3638 - accuracy: 0.8500 6/6 [==============================] - 0s 618us/step - loss: 0.5040 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5040 - accuracy: 0.6917 Epoch 184/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4062 - accuracy: 0.8500 6/6 [==============================] - 0s 644us/step - loss: 0.5029 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5029 - accuracy: 0.6917 Epoch 185/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5250 - accuracy: 0.6000 6/6 [==============================] - 0s 662us/step - loss: 0.5017 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5017 - accuracy: 0.6917 Epoch 186/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6363 - accuracy: 0.5500 6/6 [==============================] - 0s 654us/step - loss: 0.5003 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.5003 - accuracy: 0.6917 Epoch 187/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.3830 - accuracy: 0.7500 6/6 [==============================] - 0s 555us/step - loss: 0.4990 - accuracy: 0.6917  6/6 [==============================] - 0s 18ms/step - loss: 0.4990 - accuracy: 0.6917 Epoch 188/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5892 - accuracy: 0.6000 6/6 [==============================] - 0s 1ms/step - loss: 0.4976 - accuracy: 0.6917  6/6 [==============================] - 0s 20ms/step - loss: 0.4976 - accuracy: 0.6917 Epoch 189/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4722 - accuracy: 0.7500 6/6 [==============================] - 0s 628us/step - loss: 0.4962 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.4962 - accuracy: 0.6917 Epoch 190/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4150 - accuracy: 0.8000 6/6 [==============================] - 0s 592us/step - loss: 0.4948 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.4948 - accuracy: 0.6917 Epoch 191/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4167 - accuracy: 0.8000 6/6 [==============================] - 0s 858us/step - loss: 0.4933 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.4933 - accuracy: 0.6917 Epoch 192/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5952 - accuracy: 0.6000 6/6 [==============================] - 0s 672us/step - loss: 0.4918 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.4918 - accuracy: 0.6917 Epoch 193/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4614 - accuracy: 0.7500 6/6 [==============================] - 0s 577us/step - loss: 0.4901 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.4901 - accuracy: 0.6917 Epoch 194/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6146 - accuracy: 0.6000 6/6 [==============================] - 0s 625us/step - loss: 0.4885 - accuracy: 0.6917  6/6 [==============================] - 0s 18ms/step - loss: 0.4885 - accuracy: 0.6917 Epoch 195/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5188 - accuracy: 0.6500 6/6 [==============================] - 0s 702us/step - loss: 0.4870 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.4870 - accuracy: 0.6917 Epoch 196/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.4562 - accuracy: 0.7500 6/6 [==============================] - 0s 615us/step - loss: 0.4854 - accuracy: 0.6917  6/6 [==============================] - 0s 18ms/step - loss: 0.4854 - accuracy: 0.6917 Epoch 197/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5204 - accuracy: 0.6500 6/6 [==============================] - 0s 683us/step - loss: 0.4839 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.4839 - accuracy: 0.6917 Epoch 198/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.3824 - accuracy: 0.7500 6/6 [==============================] - 0s 603us/step - loss: 0.4825 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.4825 - accuracy: 0.6917 Epoch 199/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.5074 - accuracy: 0.6000 6/6 [==============================] - 0s 859us/step - loss: 0.4811 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.4811 - accuracy: 0.6917 Epoch 200/200

1/6 [====>…………………….] - ETA: 0s - loss: 0.6141 - accuracy: 0.5500 6/6 [==============================] - 0s 657us/step - loss: 0.4797 - accuracy: 0.6917  6/6 [==============================] - 0s 19ms/step - loss: 0.4797 - accuracy: 0.6917




<!-- rnb-output-end -->

<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxucGxvdChoaXN0b3J5KSArXG4gIGdndGl0bGUoXFxUcmFpbmluZyBhIG5ldXJhbCBuZXR3b3JrIGJhc2VkIGNsYXNzaWZpZXIgb24gdGhlIGlyaXMgZGF0YSBzZXRcXCkgK1xuICB0aGVtZV9idygpXG5gYGBcbmBgYCJ9 -->

```r
```r
plot(history) +
  ggtitle(\Training a neural network based classifier on the iris data set\) +
  theme_bw()

<!-- rnb-source-end -->

<!-- rnb-plot-begin -->

<img src="" />

<!-- rnb-plot-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->


### Evaluate Network Performance

The final performance can be obtained like so:


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxucGVyZiA8LSBtb2RlbCAlPiUgZXZhbHVhdGUoeF90ZXN0LCB5X3Rlc3QpXG5gYGBcbmBgYCJ9 -->

```r
```r
perf <- model %>% evaluate(x_test, y_test)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiXG4xLzEgWz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PV0gLSAwcyAxMHVzL3N0ZXAgLSBsb3NzOiAwLjMwODggLSBhY2N1cmFjeTogMC44NTAwXG5cYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxiXGJcYlxuMS8xIFs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1dIC0gMHMgMjIwdXMvc3RlcCAtIGxvc3M6IDAuMzA4OCAtIGFjY3VyYWN5OiAwLjg1MDBcbiJ9 -->

1/1 [==============================] - 0s 10us/step - loss: 0.3088 - accuracy: 0.8500  1/1 [==============================] - 0s 220us/step - loss: 0.3088 - accuracy: 0.8500




<!-- rnb-output-end -->

<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxucHJpbnQocGVyZilcbmBgYFxuYGBgIn0= -->

```r
```r
print(perf)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiICAgICBsb3NzICBhY2N1cmFjeSBcbjAuMzA4NzYzMSAwLjg1MDAwMDAgXG4ifQ== -->
 loss  accuracy 

0.3087631 0.8500000




<!-- rnb-output-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuY2xhc3NlcyA8LSBpcmlzICU+JSBhc190aWJibGUgJT4lIHB1bGwoU3BlY2llcykgJT4lIHVuaXF1ZVxueV9wcmVkICA8LSBtb2RlbCAlPiUgcHJlZGljdF9jbGFzc2VzKHhfdGVzdClcbnlfdHJ1ZSAgPC0gbm5fZGF0ICU+JSBwdWxsKGNsYXNzX2xhYmVsKSAlPiUgLlt0ZXN0X2luZGljZXNdXG5cbnRpYmJsZSh5X3RydWUgPSBjbGFzc2VzW3lfdHJ1ZSArIDFdLCB5X3ByZWQgPSBjbGFzc2VzW3lfcHJlZCArIDFdLFxuICAgICAgIENvcnJlY3QgPSBpZmVsc2UoeV90cnVlID09IHlfcHJlZCwgXFxZZXNcXCwgXFxOb1xcKSAlPiUgZmFjdG9yKSAlPiUgXG4gIGdncGxvdChhZXMoeCA9IHlfdHJ1ZSwgeSA9IHlfcHJlZCwgY29sb3VyID0gQ29ycmVjdCkpICtcbiAgZ2VvbV9qaXR0ZXIoKSArXG4gIHRoZW1lX2J3KCkgK1xuICBnZ3RpdGxlKGxhYmVsID0gXFxDbGFzc2lmaWNhdGlvbiBQZXJmb3JtYW5jZSBvZiBBcnRpZmljaWFsIE5ldXJhbCBOZXR3b3JrXFwsXG4gICAgICAgICAgc3VidGl0bGUgPSBzdHJfYyhcXEFjY3VyYWN5ID0gXFwscm91bmQocGVyZlsyXSwzKSoxMDAsXFwlXFwpKSArXG4gIHhsYWIobGFiZWwgPSBcXFRydWUgaXJpcyBjbGFzc1xcKSArXG4gIHlsYWIobGFiZWwgPSBcXFByZWRpY3RlZCBpcmlzIGNsYXNzXFwpXG5gYGBcbmBgYCJ9 -->

```r
```r
classes <- iris %>% as_tibble %>% pull(Species) %>% unique
y_pred  <- model %>% predict_classes(x_test)
y_true  <- nn_dat %>% pull(class_label) %>% .[test_indices]

tibble(y_true = classes[y_true + 1], y_pred = classes[y_pred + 1],
       Correct = ifelse(y_true == y_pred, \Yes\, \No\) %>% factor) %>% 
  ggplot(aes(x = y_true, y = y_pred, colour = Correct)) +
  geom_jitter() +
  theme_bw() +
  ggtitle(label = \Classification Performance of Artificial Neural Network\,
          subtitle = str_c(\Accuracy = \,round(perf[2],3)*100,\%\)) +
  xlab(label = \True iris class\) +
  ylab(label = \Predicted iris class\)

<!-- rnb-source-end -->

<!-- rnb-plot-begin -->

<img src="" />

<!-- rnb-plot-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->




<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxubGlicmFyeShnbW9kZWxzKVxuXG5Dcm9zc1RhYmxlKHlfcHJlZCwgeV90cnVlLFxuICAgICAgICAgICBwcm9wLmNoaXNxID0gRkFMU0UsIHByb3AudCA9IEZBTFNFLCBwcm9wLnIgPSBGQUxTRSxcbiAgICAgICAgICAgZG5uID0gYygncHJlZGljdGVkJywgJ2FjdHVhbCcpKVxuYGBgXG5gYGAifQ== -->

```r
```r
library(gmodels)

CrossTable(y_pred, y_true,
           prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE,
           dnn = c('predicted', 'actual'))

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiXG4gXG4gICBDZWxsIENvbnRlbnRzXG58LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLXxcbnwgICAgICAgICAgICAgICAgICAgICAgIE4gfFxufCAgICAgICAgICAgTiAvIENvbCBUb3RhbCB8XG58LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLXxcblxuIFxuVG90YWwgT2JzZXJ2YXRpb25zIGluIFRhYmxlOiAgMjAgXG5cbiBcbiAgICAgICAgICAgICB8IGFjdHVhbCBcbiAgIHByZWRpY3RlZCB8ICAgICAgICAgMCB8ICAgICAgICAgMSB8ICAgICAgICAgMiB8IFJvdyBUb3RhbCB8IFxuLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLXwtLS0tLS0tLS0tLXwtLS0tLS0tLS0tLXwtLS0tLS0tLS0tLXxcbiAgICAgICAgICAgMCB8ICAgICAgICAxMiB8ICAgICAgICAgMCB8ICAgICAgICAgMCB8ICAgICAgICAxMiB8IFxuICAgICAgICAgICAgIHwgICAgIDEuMDAwIHwgICAgIDAuMDAwIHwgICAgIDAuMDAwIHwgICAgICAgICAgIHwgXG4tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tfFxuICAgICAgICAgICAxIHwgICAgICAgICAwIHwgICAgICAgICA1IHwgICAgICAgICAzIHwgICAgICAgICA4IHwgXG4gICAgICAgICAgICAgfCAgICAgMC4wMDAgfCAgICAgMS4wMDAgfCAgICAgMS4wMDAgfCAgICAgICAgICAgfCBcbi0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS18LS0tLS0tLS0tLS18LS0tLS0tLS0tLS18LS0tLS0tLS0tLS18XG5Db2x1bW4gVG90YWwgfCAgICAgICAgMTIgfCAgICAgICAgIDUgfCAgICAgICAgIDMgfCAgICAgICAgMjAgfCBcbiAgICAgICAgICAgICB8ICAgICAwLjYwMCB8ICAgICAwLjI1MCB8ICAgICAwLjE1MCB8ICAgICAgICAgICB8IFxuLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLXwtLS0tLS0tLS0tLXwtLS0tLS0tLS0tLXwtLS0tLS0tLS0tLXxcblxuIFxuIn0= -->

Cell Contents |————————-| | N | | N / Col Total | |————————-|

Total Observations in Table: 20

         | actual 
predicted 0 1 2 Row Total
0 12 0 0 12
1.000 0.000 0.000
————- ———– ———– ———– ———–
1 0 5 3 8
0.000 1.000 1.000
————- ———– ———– ———– ———–
Column Total 12 5 3 20
0.600 0.250 0.150
————- ———– ———– ———– ———–

```

Conclusion

I hope this illustrated just how easy it is to get started building artificial neural network using Keras and TensorFlow in R. With relative ease, we created a 3-class predictor with an accuracy of 100%. This was a basic minimal example. The network can be expanded to create Deep Learning networks and also the entire TensorFlow API is available.

Enjoy and Happy Learning!

Leon

Thanks again Leon, this was awsome!!!

LS0tCnRpdGxlOiAiQnVpbGRpbmcgYSBzaW1wbGUgbmV1cmFsIG5ldHdvcmsgdXNpbmcgS2VyYXMgYW5kIFRlbnNvcmZsb3ciCm91dHB1dDoKICBodG1sX25vdGVib29rOiBkZWZhdWx0CiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0CiAgd29yZF9kb2N1bWVudDogZGVmYXVsdAogIGh0bWxfZG9jdW1lbnQ6CiAgICBkZl9wcmludDogcGFnZWQKLS0tCgpUaGFuayB5b3UKLS0tLS0tLS0tLQoKQSBiaWcgdGhhbmsgeW91IHRvIExlb24gSmVzc2VuIGZvciBwb3N0aW5nIGhpcyBjb2RlIG9uIGdpdGh1Yi4KCltCdWlsZGluZyBhIHNpbXBsZSBuZXVyYWwgbmV0d29yayB1c2luZyBLZXJhcyBhbmQgVGVuc29yZmxvd10oaHR0cHM6Ly9naXRodWIuY29tL2xlb25qZXNzZW4va2VyYXNfdGVuc29yZmxvd19vbl9pcmlzL2Jsb2IvbWFzdGVyL1JFQURNRS5tZCkKCkkgaGF2ZSBmb3JrZWQgaGlzIHByb2plY3Qgb24gZ2l0aHViIGFuZCBwdXQgaGlzIGNvZGUgaW50byBhbiBSIE5vdGVib29rIHNvIHdlIGNhbiBydW4gaXQgaW4gY2xhc3MuCgpNb3RpdmF0aW9uCi0tLS0tLS0tLS0KClRoZSBmb2xsb3dpbmcgaXMgYSBtaW5pbWFsIGV4YW1wbGUgZm9yIGJ1aWxkaW5nIHlvdXIgZmlyc3Qgc2ltcGxlIGFydGlmaWNpYWwgbmV1cmFsIG5ldHdvcmsgdXNpbmcgS2VyYXMgYW5kIFRlbnNvckZsb3cgZm9yIFIuCgpbVGVuc29yRmxvdyBmb3IgUiBieSBSc3R1ZGlvIGxpdmVzIGhlcmVdKGh0dHBzOi8vdGVuc29yZmxvdy5yc3R1ZGlvLmNvbS9rZXJhcy8pLgoKR2V0dGluZ3Mgc3RhcnRlZCAtIEluc3RhbGwgS2VyYXMgYW5kIFRlbnNvckZsb3cgZm9yIFIKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKWW91IGNhbiBpbnN0YWxsIHRoZSBLZXJhcyBmb3IgUiBwYWNrYWdlIGZyb20gQ1JBTiBhcyBmb2xsb3dzOgpgYGB7ciBldmFsPUZBTFNFfQojIGluc3RhbGwucGFja2FnZXMoImtlcmFzIikKYGBgCgpUZW5zb3JGbG93IGlzIHRoZSBkZWZhdWx0IGJhY2tlbmQgZW5naW5lLiBUZW5zb3JGbG93IGFuZCBLZXJhcyBjYW4gYmUgaW5zdGFsbGVkIGFzIGZvbGxvd3M6CgpgYGB7ciBldmFsPUZBTFNFfQojIGxpYnJhcnkoa2VyYXMpCiMgaW5zdGFsbF9rZXJhcygpCmBgYAoKTmF0dXJhbGx5LCB3ZSB3aWxsIGFsc28gbmVlZCBgVGlkeXZlcnNlYDoKCmBgYHtyIGV2YWw9RkFMU0V9CiMgSW5zdGFsbCBmcm9tIENSQU4KIyBpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQoKIyBPciB0aGUgZGV2ZWxvcG1lbnQgdmVyc2lvbiBmcm9tIEdpdEh1YgojIGluc3RhbGwucGFja2FnZXMoImRldnRvb2xzIikKIyBkZXZ0b29sczo6aW5zdGFsbF9naXRodWIoImhhZGxleS90aWR5dmVyc2UiKQpgYGAKCk9uY2UgaW5zdGFsbGVkLCB3ZSBzaW1wbHkgbG9hZCB0aGUgbGlicmFyaWVzCgpgYGB7cn0KbGlicmFyeSgia2VyYXMiKQpzdXBwcmVzc01lc3NhZ2VzKGxpYnJhcnkoInRpZHl2ZXJzZSIpKQpgYGAKCkFydGlmaWNpYWwgTmV1cmFsIE5ldHdvcmsgVXNpbmcgdGhlIElyaXMgRGF0YSBTZXQKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKUmlnaHQsIGxldCdzIGdldCB0byBpdCEKCiMjIyBEYXRhCgpUaGUgZmFtb3VzIChGaXNoZXIncyBvciBBbmRlcnNvbidzKSBgaXJpc2AgZGF0YSBzZXQgY29udGFpbnMgYSB0b3RhbCBvZiAxNTAgb2JzZXJ2YXRpb25zIG9mIDQgaW5wdXQgZmVhdHVyZXMgYFNlcGFsLkxlbmd0aGAsIGBTZXBhbC5XaWR0aGAsIGBQZXRhbC5MZW5ndGhgIGFuZCBgUGV0YWwuV2lkdGhgIGFuZCAzIG91dHB1dCBjbGFzc2VzIGBzZXRvc2FgIGB2ZXJzaWNvbG9yYCBhbmQgYHZpcmdpbmljYWAsIHdpdGggNTAgb2JzZXJ2YXRpb25zIGluIGVhY2ggY2xhc3MuIFRoZSBkaXN0cmlidXRpb25zIG9mIHRoZSBmZWF0dXJlIHZhbHVlcyBsb29rcyBsaWtlIHNvOgoKYGBge3J9CmlyaXMgJT4lIGFzX3RpYmJsZSAlPiUgZ2F0aGVyKGZlYXR1cmUsIHZhbHVlLCAtU3BlY2llcykgJT4lCiAgZ2dwbG90KGFlcyh4ID0gZmVhdHVyZSwgeSA9IHZhbHVlLCBmaWxsID0gU3BlY2llcykpICsKICBnZW9tX3Zpb2xpbihhbHBoYSA9IDAuNSwgc2NhbGUgPSAid2lkdGgiKSArCiAgdGhlbWVfYncoKQpgYGAKCk91ciBhaW0gaXMgdG8gY29ubmVjdCB0aGUgNCBpbnB1dCBmZWF0dXJlcyB0byB0aGUgY29ycmVjdCBvdXRwdXQgY2xhc3MgdXNpbmcgYW4gYXJ0aWZpY2lhbCBuZXVyYWwgbmV0d29yay4gRm9yIHRoaXMgdGFzaywgd2UgaGF2ZSBjaG9zZW4gdGhlIGZvbGxvd2luZyBzaW1wbGUgYXJjaGl0ZWN0dXJlIHdpdGggb25lIGlucHV0IGxheWVyIHdpdGggNCBuZXVyb25zIChvbmUgZm9yIGVhY2ggZmVhdHVyZSksIG9uZSBoaWRkZW4gbGF5ZXIgd2l0aCA0IG5ldXJvbnMgYW5kIG9uZSBvdXRwdXQgbGF5ZXIgd2l0aCAzIG5ldXJvbnMgKG9uZSBmb3IgZWFjaCBjbGFzcyksIGFsbCBmdWxseSBjb25uZWN0ZWQ6CgohW2FyY2hpdGVjdHVyZV92aXN1YWxpc2F0aW9uLnBuZ10oLi9pbWcvYXJjaGl0ZWN0dXJlX3Zpc3VhbGlzYXRpb24ucG5nKQoKT3VyIGFydGlmaWNpYWwgbmV1cmFsIG5ldHdvcmsgd2lsbCBoYXZlIGEgdG90YWwgb2YgMzUgcGFyYW1ldGVyczogNCBmb3IgZWFjaCBpbnB1dCBuZXVyb24gY29ubmVjdGVkIHRvIHRoZSBoaWRkZW4gbGF5ZXIsIHBsdXMgYW4gYWRkaXRpb25hbCA0IGZvciB0aGUgYXNzb2NpYXRlZCBmaXJzdCBiaWFzIG5ldXJvbiBhbmQgMyBmb3IgZWFjaCBvZiB0aGUgaGlkZGVuIG5ldXJvbnMgY29ubmVjdGVkIHRvIHRoZSBvdXRwdXQgbGF5ZXIsIHBsdXMgYW4gYWRkaXRpb25hbCAzIGZvciB0aGUgYXNzb2NpYXRlZCBzZWNvbmQgYmlhcyBuZXVyb24uIEkuZS4gJDQgXHRpbWVzIDQrNCs0IFwgdGltZXMgMyszPTM1JAoKIyMjIFByZXBhcmUgZGF0YQoKV2Ugc3RhcnQgd2l0aCBzbGlnaHRseSB3cmFuZ2xpbmcgdGhlIGlyaXMgZGF0YSBzZXQgYnkgcmVuYW1pbmcgYW5kIHNjYWxpbmcgdGhlIGZlYXR1cmVzIGFuZCBjb252ZXJ0aW5nIGNoYXJhY3RlciBsYWJlbHMgdG8gbnVtZXJpYzoKCmBgYHtyfQpzZXQuc2VlZCgyNjU1MDkpCm5uX2RhdCA8LSBpcmlzICU+JSBhc190aWJibGUgJT4lCiAgbXV0YXRlKHNlcGFsX2xlbmd0aCA9IHNjYWxlKFNlcGFsLkxlbmd0aCksCiAgICAgICAgIHNlcGFsX3dpZHRoICA9IHNjYWxlKFNlcGFsLldpZHRoKSwKICAgICAgICAgcGV0YWxfbGVuZ3RoID0gc2NhbGUoUGV0YWwuTGVuZ3RoKSwKICAgICAgICAgcGV0YWxfd2lkdGggID0gc2NhbGUoUGV0YWwuV2lkdGgpLCAgICAgICAgICAKICAgICAgICAgY2xhc3NfbGFiZWwgID0gYXMubnVtZXJpYyhTcGVjaWVzKSAtIDEpICU+JSAKICAgIHNlbGVjdChzZXBhbF9sZW5ndGgsIHNlcGFsX3dpZHRoLCBwZXRhbF9sZW5ndGgsIHBldGFsX3dpZHRoLCBjbGFzc19sYWJlbCkKCm5uX2RhdCAlPiUgaGVhZCgzKQpgYGAKClRoZW4sIHdlIGNyZWF0ZSBpbmRpY2VzIGZvciBzcGxpdHRpbmcgdGhlIGlyaXMgZGF0YSBpbnRvIGEgdHJhaW5pbmcgYW5kIGEgdGVzdCBkYXRhIHNldC4gV2Ugc2V0IGFzaWRlIDIwJSBvZiB0aGUgZGF0YSBmb3IgdGVzdGluZzoKCmBgYHtyfQp0ZXN0X2ZyYWN0aW9uICAgPC0gMC4yMApuX3RvdGFsX3NhbXBsZXMgPC0gbnJvdyhubl9kYXQpCm5fdHJhaW5fc2FtcGxlcyA8LSBjZWlsaW5nKCgxIC0gdGVzdF9mcmFjdGlvbikgKiBuX3RvdGFsX3NhbXBsZXMpCnRyYWluX2luZGljZXMgICA8LSBzYW1wbGUobl90b3RhbF9zYW1wbGVzLCBuX3RyYWluX3NhbXBsZXMpCm5fdGVzdF9zYW1wbGVzICA8LSBuX3RvdGFsX3NhbXBsZXMgLSBuX3RyYWluX3NhbXBsZXMKdGVzdF9pbmRpY2VzICAgIDwtIHNldGRpZmYoc2VxKDEsIG5fdHJhaW5fc2FtcGxlcyksIHRyYWluX2luZGljZXMpCmBgYAoKQmFzZWQgb24gdGhlIGluZGljZXMsIHdlIGNhbiBub3cgY3JlYXRlIHRyYWluaW5nIGFuZCB0ZXN0IGRhdGEKCmBgYHtyfQp4X3RyYWluIDwtIG5uX2RhdCAlPiUgc2VsZWN0KC1jbGFzc19sYWJlbCkgJT4lIGFzLm1hdHJpeCAlPiUgLlt0cmFpbl9pbmRpY2VzLF0KeV90cmFpbiA8LSBubl9kYXQgJT4lIHB1bGwoY2xhc3NfbGFiZWwpICU+JSAuW3RyYWluX2luZGljZXNdICU+JSB0b19jYXRlZ29yaWNhbCgzKQp4X3Rlc3QgIDwtIG5uX2RhdCAlPiUgc2VsZWN0KC1jbGFzc19sYWJlbCkgJT4lIGFzLm1hdHJpeCAlPiUgLlt0ZXN0X2luZGljZXMsXQp5X3Rlc3QgIDwtIG5uX2RhdCAlPiUgcHVsbChjbGFzc19sYWJlbCkgJT4lIC5bdGVzdF9pbmRpY2VzXSAlPiUgdG9fY2F0ZWdvcmljYWwoMykKYGBgCgojIyMgU2V0IEFyY2hpdGVjdHVyZQoKV2l0aCB0aGUgZGF0YSBpbiBwbGFjZSwgd2Ugbm93IHNldCB0aGUgYXJjaGl0ZWN0dXJlIG9mIG91ciBhcnRpZmljaWNhbCBuZXVyYWwgbmV0d29yazoKCmBgYHtyfQptb2RlbCA8LSBrZXJhc19tb2RlbF9zZXF1ZW50aWFsKCkKbW9kZWwgJT4lIAogIGxheWVyX2RlbnNlKHVuaXRzID0gNCwgYWN0aXZhdGlvbiA9ICdyZWx1JywgaW5wdXRfc2hhcGUgPSA0KSAlPiUgCiAgbGF5ZXJfZGVuc2UodW5pdHMgPSAzLCBhY3RpdmF0aW9uID0gJ3NvZnRtYXgnKQptb2RlbCAlPiUgc3VtbWFyeQpgYGAKCgpOZXh0LCB0aGUgYXJjaGl0ZWN0dXJlIHNldCBpbiB0aGUgbW9kZWwgbmVlZHMgdG8gYmUgY29tcGlsZWQ6CgpgYGB7cn0KbW9kZWwgJT4lIGNvbXBpbGUoCiAgbG9zcyAgICAgID0gJ2NhdGVnb3JpY2FsX2Nyb3NzZW50cm9weScsCiAgb3B0aW1pemVyID0gb3B0aW1pemVyX3Jtc3Byb3AoKSwKICBtZXRyaWNzICAgPSBjKCdhY2N1cmFjeScpCikKYGBgCgojIyMgVHJhaW4gdGhlIEFydGlmaWNpYWwgTmV1cmFsIE5ldHdvcmsKCkxhc3RseSB3ZSBmaXQgdGhlIG1vZGVsIGFuZCBzYXZlIHRoZSB0cmFpbmluZyBwcm9ncmVzIGluIHRoZSBgaGlzdG9yeWAgb2JqZWN0OgoKYGBge3J9Cmhpc3RvcnkgPC0gbW9kZWwgJT4lIGZpdCgKICB4ID0geF90cmFpbiwgeSA9IHlfdHJhaW4sCiAgZXBvY2hzID0gMjAwLAogIGJhdGNoX3NpemUgPSAyMCwKICB2YWxpZGF0aW9uX3NwbGl0ID0gMAopCnBsb3QoaGlzdG9yeSkgKwogIGdndGl0bGUoIlRyYWluaW5nIGEgbmV1cmFsIG5ldHdvcmsgYmFzZWQgY2xhc3NpZmllciBvbiB0aGUgaXJpcyBkYXRhIHNldCIpICsKICB0aGVtZV9idygpCmBgYAoKIyMjIEV2YWx1YXRlIE5ldHdvcmsgUGVyZm9ybWFuY2UKClRoZSBmaW5hbCBwZXJmb3JtYW5jZSBjYW4gYmUgb2J0YWluZWQgbGlrZSBzbzoKCmBgYHtyfQpwZXJmIDwtIG1vZGVsICU+JSBldmFsdWF0ZSh4X3Rlc3QsIHlfdGVzdCkKcHJpbnQocGVyZikKYGBgCgpgYGB7cn0KY2xhc3NlcyA8LSBpcmlzICU+JSBhc190aWJibGUgJT4lIHB1bGwoU3BlY2llcykgJT4lIHVuaXF1ZQp5X3ByZWQgIDwtIG1vZGVsICU+JSBwcmVkaWN0X2NsYXNzZXMoeF90ZXN0KQp5X3RydWUgIDwtIG5uX2RhdCAlPiUgcHVsbChjbGFzc19sYWJlbCkgJT4lIC5bdGVzdF9pbmRpY2VzXQoKdGliYmxlKHlfdHJ1ZSA9IGNsYXNzZXNbeV90cnVlICsgMV0sIHlfcHJlZCA9IGNsYXNzZXNbeV9wcmVkICsgMV0sCiAgICAgICBDb3JyZWN0ID0gaWZlbHNlKHlfdHJ1ZSA9PSB5X3ByZWQsICJZZXMiLCAiTm8iKSAlPiUgZmFjdG9yKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0geV90cnVlLCB5ID0geV9wcmVkLCBjb2xvdXIgPSBDb3JyZWN0KSkgKwogIGdlb21faml0dGVyKCkgKwogIHRoZW1lX2J3KCkgKwogIGdndGl0bGUobGFiZWwgPSAiQ2xhc3NpZmljYXRpb24gUGVyZm9ybWFuY2Ugb2YgQXJ0aWZpY2lhbCBOZXVyYWwgTmV0d29yayIsCiAgICAgICAgICBzdWJ0aXRsZSA9IHN0cl9jKCJBY2N1cmFjeSA9ICIscm91bmQocGVyZlsyXSwzKSoxMDAsIiUiKSkgKwogIHhsYWIobGFiZWwgPSAiVHJ1ZSBpcmlzIGNsYXNzIikgKwogIHlsYWIobGFiZWwgPSAiUHJlZGljdGVkIGlyaXMgY2xhc3MiKQpgYGAKCgpgYGB7cn0KbGlicmFyeShnbW9kZWxzKQoKQ3Jvc3NUYWJsZSh5X3ByZWQsIHlfdHJ1ZSwKICAgICAgICAgICBwcm9wLmNoaXNxID0gRkFMU0UsIHByb3AudCA9IEZBTFNFLCBwcm9wLnIgPSBGQUxTRSwKICAgICAgICAgICBkbm4gPSBjKCdwcmVkaWN0ZWQnLCAnYWN0dWFsJykpCgpgYGAKCgojIyMgQ29uY2x1c2lvbgoKSSBob3BlIHRoaXMgaWxsdXN0cmF0ZWQganVzdCBob3cgZWFzeSBpdCBpcyB0byBnZXQgc3RhcnRlZCBidWlsZGluZyBhcnRpZmljaWFsIG5ldXJhbCBuZXR3b3JrIHVzaW5nIEtlcmFzIGFuZCBUZW5zb3JGbG93IGluIFIuIFdpdGggcmVsYXRpdmUgZWFzZSwgd2UgY3JlYXRlZCBhIDMtY2xhc3MgcHJlZGljdG9yIHdpdGggYW4gYWNjdXJhY3kgb2YgMTAwJS4gVGhpcyB3YXMgYSBiYXNpYyBtaW5pbWFsIGV4YW1wbGUuIFRoZSBuZXR3b3JrIGNhbiBiZSBleHBhbmRlZCB0byBjcmVhdGUgRGVlcCBMZWFybmluZyBuZXR3b3JrcyBhbmQgYWxzbyB0aGUgZW50aXJlIFRlbnNvckZsb3cgQVBJIGlzIGF2YWlsYWJsZS4KCkVuam95IGFuZCBIYXBweSBMZWFybmluZyEKCkxlb24KCioqVGhhbmtzIGFnYWluIExlb24sIHRoaXMgd2FzIGF3c29tZSEhISoq