
Word2Vec



Recall: Creating Numerical Features from Text

import pandas as pd

from sklearn.feature_extraction.text

import CountVectorizer

corpus = ['This is the first document.',

'This is the second 

document.',

'And the third one.']

cv = CountVectorizer()

X = cv.fit_transform(corpus)

pd.DataFrame(X.toarray(),

columns=cv.get_feature_names())

Code Output

Count Vectorizer



Word/Document Vectors with CountVectorizer

Document Vectors

• Doc 0: [0, 1, 1, 1, 0, 0, 1, 0, 1]

• Doc 1: [0, 1, 0, 1, 0, 1, 1, 0, 1]

• Doc 2: [1, 0, 0, 0, 1, 0, 1, 1, 0]

Flip it around  Word Vectors

• and: [0, 0, 1]

• document: [1, 1, 0]

• first: [1, 0, 0]

• is: [1, 1, 0]

• one: [0, 0, 1]

• second: [0, 1, 0]

• the: [1, 1, 1]

• third: [0, 0, 1]

• this: [1, 1, 0]



Why Word Vectors?

• Represent Conceptual 

“meaning” of words

• Word vectors close to each 

other have similar meaning



How to Use Word Vectors?

• Information Retrieval

▪ e.g. conceptual search queries, concepts related to “painting”

• Document Vectors

▪ A document vector is the average of its word vectors

• Machine Learning

▪ Document Classification (from document vectors)

▪ Document Clustering

• Recommendation

▪ Recommend similar documents to search query or sample documents



Can we do better than counts?
Binary/Counts

TFIDF

Dimensionality 

Reduction

Word2Vec

Okay

Best!

Better

• Answer: YES!

• Problems with counts:

▪ Limited information

– Possible Resolution: TFIDF

▪ Vectors HUGE for many documents

– Possible Resolution: Matrix Factorization

– Bag of Words  No Word Order

– Possible Resolution: 

Neural Networks  Word2vec!



How to Use Word Vectors?

• Answer: Comparability with 

human intuition

• Standard Baseline Tests:

▪ Analogies

▪ Ratings of Word Similarity 

▪ Verb Tenses

▪ Country-Capital Relationships



Finding Better Word Vectors: Word2Vec

• Problem: Count vectors far too large for many 

documents.

▪ Solution: Word2Vec reduces number of dimensions 

(configurable e.g. 300)

• Problem: Bag of Words neglects word order.

▪ (Partial) Solution: Word2Vec trains on small 

sequences of text (“context windows”)



Training Word2Vec

• Use a Neural Network on Context 
Windows

• 2 main approaches for inputs and 

labels:  

▪ Skip-Grams

▪ Continuous Bag of 
Words (CBOW)

Vectors usually similar, subtle 

differences, also differences in 

computational time



Training Word2Vec: Context Windows

• Input Layer: Context Windows

• Observations for word2vec: All context windows in a corpus  

• Context window size determines size of relevant window around word:

▪ e.g.:  Document: "The quick brown fox jumped over the lazy dog.”

▪ Window size: 4, target word “fox”.

– Window 1: "The quick brown fox jumped over the lazy dog."  

– Window 2: "The quick brown fox jumped over the lazy dog.”

– Window 3: "The quick brown fox jumped over the lazy dog.”

– Window 4: "The quick brown fox jumped over the lazy dog."



Training Word2Vec: One-Hot Word Vectors

• We need to be able to represent a sequence of words as a vector

• Assign each word an index from 0 to V  

▪ V is the size of the vocabulary aka # distinct words in the corpus

• A word vector is:

• 1 for the index of that word

• 0 for all other entries

• Called One-Hot Encoding



Training Word2Vec: One-Hot Context Windows

• Need vectors for context windows

• A window has vector that's the concatenation of its word vectors

• For window size d, the vector is of length (V x d)

▪ Only d entries (one for each word) will be nonzero (1s)

If window were “cat dog”



Training Word2Vec: SkipGrams

• SkipGrams is a neural network architecture that uses a word to predict the words in the 

surrounding context, defined by the window size.

• Inputs:  

▪ The middle word of the context window (one-hot encoded)  

▪ Dimensionality: V

• Outputs:   

▪ The other words of the context window (one-hot encoded)  

▪ Dimensionality: (V x (d-1)) 

▪ Turn the crank! 



Training Word2Vec: SkipGrams

• SkipGrams architecture:



Training Word2Vec: CBOW

• CBOW (continuous bag of words) uses the surrounding context (defined by the window 

size) to predict the word.

• Inputs:  

▪ The other words of the context window (one-hot encoded)  

▪ Dimensionality: (V x (d-1)) 

• Outputs:   

▪ The middle word of the context window (one-hot encoded)  

▪ Dimensionality: V



Training Word2Vec: CBOW

• CBOW architecture:



Training Word2Vec: Dimension Reduction

• Number of nodes in hidden layer, N, is a 

parameter

▪ It is the (reduced) dimensionality of our 

resulting word vector space!

▪ Fit neural net  find weights matrix W

▪ Word Vectors: xN = WTx

▪ Checking dimensions:

– x: V x 1

– WT: N x V

– xN: N x 1



Training Word2Vec: What Happened?

• Learn words likely to appear near each 

word

• This context information ultimately leads to 

vectors for related words falling near one 

another!

• Which gives us really good word vectors!  
Aka “Word Embeddings”



Do I need to Train Word2Vec?

• Answer: NO!

• You can download pre-trained Word2Vec models trained on massive 
corpora of data.

• Common example: Google News Vectors, 300 dimensional vectors for 3 
million words, trained on Google News articles.

• File containing vectors (1.5 GB) can be downloaded for free and easily 
loaded into gensim.



Nice Properties of Word2Vec Embeddings

• word2vec (somewhat magically!) captures 

nice geometric relations between words

▪ e.g.: Analogies

– King is to Queen as Man is to Woman  

– The vector between King and Queen is the 

same as that between man and woman!

– Works for all sorts of things: capitals, cities, 

etc



Word2Vec with Gensim

Output:

Input:

from gensim.models.KeyedVectors import load_word2vec_format

google_model = load_word2vec_format(google_vec_file, binary=True)

# woman - man + king
print(google_model.most_similar(positive=['woman', 'king'], negative=['man'], 
topn=3))

[('queen', 0.7118192911148071),

('monarch', 0.6189674139022827),

('princess', 0.5902431607246399)]



How can we Use Word2Vec?

• Vectors can be combined to create 

features for documents

▪ e.g. Document Vector is average (or sum) 

of its word vectors

• Use Document Vectors for ML on 

Documents:

▪ Classification, Regression

▪ Clustering

▪ Recommendation



Comparing Word2Vec Embeddings

• How to compare 2 word vectors?

• Cosine Similarity

▪ Scaled angle between the vectors

▪ Vector length doesn’t matter

▪ Makes most sense for word vectors

▪ Why?

– e.g. [2, 2, 2] and [4, 4, 4] should be the 

same vector

– It’s the ratios of frequencies that define 

meaning



• Problem: Categorizing News Articles

• Is document about Politics?  Sports? 

Science/Tech?  etc

• Approach:

▪ Word Vectors  Document Vectors

▪ Classification on Document Vectors

– Often KNN with Cosine Similarity

Word Vector Application: Text Classification



Word Vector Application: Text Clustering

• Problem: Grouping Similar Emails

• Work Emails, Bills, Ads, News, etc

• Approach:

▪ Word Vectors  Document Vectors

▪ Clustering on Document Vectors

– Use Cosine Similarity



Word Vector Application: Recommendation

• Problem: Find me news stories I care about!

• Approach:

▪ Word Vectors  Document Vectors

▪ Suggest documents similar to:

a) User search query

b) Example articles that user favorited



Summary

• With word vectors, so many possibilities!

• Can conceptually compare any bunch of words to any other bunch of words.

• Word2Vec finds really good, compact vectors.

▪ Trains a Neural Network

▪ On Context Windows

▪ SkipGram predicts the context words from the middle word in the window.

▪ CBOW predicts the middle word from the context words in the window.

• Word Vectors can be used for all sorts of ML





Word2Vec in Python



Word2Vec in Python - Loading Model

Output:

Input:

from gensim.models.KeyedVectors import load_word2vec_format

google_model = load_word2vec_format(google_vec_file, binary=True)

print(type(google_model.vocab)) # dictionary
print("{:,}".format(len(google_model.vocab.keys()))) # number of words 
print(google_model.vector_size) # vector size 

dict

3,000,000

300



Word2Vec in Python - Examining Vectors

Output:

Input:

bat_vector = google_model.word_vec('bat')

print(type(bat_vector))
print(len(bat_vector))
print(bat_vector.shape)
print(bat_vector[:5])

<class 'numpy.ndarray'>

300

(300,)

[-0.34570312  0.32421875  0.15722656 -0.04223633 -0.28710938]



Word2Vec in Python - Vector Similarity

Output:

Input:

print(google_model.similarity(‘Bill_Clinton’, ‘Barack_Obama'))

print(google_model.similarity(‘Bill_Clinton', ‘Taylor_Swift’))

0.62116989722645277

0.25381746688228518

As expected, Bill Clinton is much more similar to Barack Obama than to Taylor Swift.



Word2Vec in Python - Most Similar Words

Output:

Input:

print(google_model.similar_by_word('Barack_Obama'))

[('Obama', 0.8036513328552246),

('Barrack_Obama', 0.7766816020011902),

('Illinois_senator', 0.757197916507721),

('McCain', 0.7530534863471985),

('Barack', 0.7448185086250305),

('Barack_Obama_D-Ill.', 0.7196038961410522),

('Hillary_Clinton', 0.6864978075027466),

('Sen._Hillary_Clinton', 0.6827855110168457),

('elect_Barack_Obama', 0.6812860369682312),

('Clinton', 0.6713168025016785)]



Word2Vec in Python - Analogies

Output:

Input:

print(google_model.most_similar(positive=[‘Paris', 'Spain'], 
negative=['France'], topn=2))

print(google_model.most_similar(positive=[‘Yankees', ‘Boston'], 
negative=['New_York'], topn=2)

[('Madrid', 0.7571904063224792), ('Barcelona', 0.6230698823928833)]

[('Red_Sox', 0.8348262906074524), ('Boston_Red_Sox', 0.7118345499038696)]



Word2Vec in Python - Odd Word Out

Output:

Input:

print(google_model.doesnt_match(['breakfast', 'lunch', 'dinner', ‘table'])

print(google_model.doesnt_match(['baseball', 'basketball', 'football', 
‘mattress']))

table

mattress

As expected, “table” and “mattress” are the odd words out.




