Software

Word2Vec

Recall: Creating Numerical Features from Text

Code Output
import pandas as pd ¢ and ¢ document ¢ first ¢ is ¢ one ¢ second ¢ the ¢ third ¢ this ¢
from_sklearn.feature_egtractlon.text 00 1 1 10 0 1 0 1
import CountVectorilzer
10 1 0 1 0 1 1 0 1
corpus = ['This 1s the first document.', g 4 0 0 0 1 0 1 1 0

'This is the second
document. ',
'And the third one.']

cv = CountVectorizer ()
X = cv.fit transform(corpus)

Count Vectorizer
pd.DataFrame (X.toarray (),

columns=cv.get feature names(())

Software

Word /Document Vectors with CountVectorizer

Document Vectors

DocO:[O 1.1.1.00.1.0]] ¢ and ¢ document ¢ first ¢ is ¢ one ¢ second ¢ the ¢ third ¢ this ¢
0 0 1 1 1 0 0 1 0 1
Doc 1:[0,1,0,1,0,1,1,0, 1]
10 1 o 1 0 10 1
Doc 2:[1,0,0,0,1,0, 1, 1, 0] 2 1 0 0 0 1 0 1 1 0
Flip it around 2 Word Vectors Rl B0
and 0 0 1
* and: [0, O, 1] * the:[1,1, 1] oo & 3 10
* document: [1, 1, O] * third: [0, O, 1] first 1 0 O
e first: [1, O, O] * this: [1, 1, O] . r e
o one 0 0 1
* is: [1, 1, 0] eond 0 1 o
* one: [0, 0, 1] the 1o
* second: [0, 1, O] thid 0 0 1
this 1 1 0

Why Word Vectors?

0

o g O microwave
Q®*
05
Represent Conceptual
13 o 7 n led charger
meaning” of words s 0"‘*.“}N ® ™
@ vanity @b)
0.0 .smi .!:alhrcamw et .”*.mait
0 bathtub h:{ O‘“‘ .mol .bo-sch
Word vectors close to each @ @ hower o
. . . o»/alve
other have similar meaning
.ﬁmsh .&ck
-05 @ o i @ Proen@ Mse @ rinkler
pain
.Cﬁncre{e .ﬁSS
-1.0
-08 -0.6 -04 -02 0.0 02 04 06 08

Software

How to Use Word Vectors?

Information Retrieval
= e.g. conceptual search queries, concepts related to “painting”

Document Vectors

= A document vector is the average of its word vectors

Machine Learning

= Document Classification (from document vectors)

= Document Clustering

Recommendation

= Recommend similar documents to search query or sample documents

Software

Can we do better than counts?
Okay

e Answer: YES!

Problems with counts: Better

TFIDF

. Limited information

- Possible Resolution: TFIDF g . . .
Dimensionality

= Vectors HUGE for many documents

Reduction

— Possible Resolution: Matrix Factorization

- Bag of Words 2 No Word Order

Best! Word2Vec

— Possible Resolution:

Neural Networks 2 Word2vec! " J

How to Use Word Vectors? o
@
Verb tense
1 O ’ sSwam
« Answer: Comparability with walking P
human intuition e R . S,
0. O
0. "‘-,‘ woman swimming
king 1 . .
. R Spain
Standard Baseline Tests: _&’ reaty >ﬁmm
= Analogies / Germany — Rome
o Male-Female Berlin
= Ratings of Word Similarity e
Ankara
= Verb Tenses ROOLS | Se——
Moscow
Canada Ottawa
= Country-Capital Relationships . Japa
Country-Capital =~ Tokyo
Vietnam Hanoi
China Beijing

Software

Finding Better Word Vectors: Word2Vec

T

« Problem: Count vectors far too large for many -y

documents.

Solution: Word2Vec reduces number of dimensions
(configurable e.g. 300)

No. features (dimensionality)

WINDOW)
! 1
THE QUICK BROWN FOX JUPS OUER THE LARY DoG

« Problem: Bag of Words neglects word order.

(Partial) Solution: Word2Vec trains on small

sequences of text (“context windows”) \\] /'/”
, ’\ CLRSSIFIERS

oy

Training Word2Vec

Use a Neural Network on Context
Windows

2 main approaches for inputs and
labels:

Skip-Grams

Continuous Bag of
Words (CBOW)

output layer

Vectors usually similar, subtle \
differences, also differences in |nPUt layer

computational time

hidden layer

Training Word2Vec: Context Windows

o Input Layer: Context Windows
« Observations for word2vec: All context windows in a corpus

- Context window size determines size of relevant window around word:
= e.g.: Document: "The quick brown fox jumped over the lazy dog.”
= Window size: 4, target word “fox”.
- Window 1: "The quick brown fox jumped over the lazy dog."
- Window 2: "The quick brown fox jumped over the lazy dog.”

- Window 3: "The quick brown fox jumped over the lazy dog.”

- Window 4: "The quick brown fox jumped over the lazy dog."

Training Word2Vec: One-Hot Word Vectors

We need to be able to represent a sequence of words as a vector

Assign each word an index from O to V

= Vs the size of the vocabulary aka # distinct words in the corpus

. A word vector is:
cat I
1 for the index of that word
O for all other entries cats .
. Called One-Hot Encoding dog]

Training Word2Vec: One-Hot Context Windows

Need vectors for context windows
A window has vector that's the concatenation of its word vectors

For window size d, the vector is of length (V x d)

Only d entries (one for each word) will be nonzero (1s)

Cat Dog

If window were “cat dog”

Training Word2Vec: SkipGrams

o SkipGrams is a neural network architecture that uses a word to predict the words in the
surrounding context, defined by the window size.

e Inputs:
= The middle word of the context window (one-hot encoded)
= Dimensionality: V

e OQutputs:
= The other words of the context window (one-hot encoded)

= Dimensionality: (V x (d-1))

= Turn the crank!

Training Word2Vec: SkipGrams

« SkipGrams architecture: Output layer

Yig

Input layer

Yei

Software

Training Word2Vec: CBOW

« CBOW (continuous bag of words) uses the surrounding context (defined by the window

size) to predict the word.

e Inputs:
= The other words of the context window (one-hot encoded)
= Dimensionality: (V x (d-1))

e OQutputs:

= The middle word of the context window (one-hot encoded)

= Dimensionality: V

Training Word2Vec: CBOW

e CBOW architecture:

Input layer

[*X X1}

1]

V-dim

W,y

C=V-dim

Software

Training Word2Vec: Dimension Reduction

« Number of nodes in hidden layer, N, is a
parameter Input layer

0
= It is the (reduced) dimensionality of our 5
resulting word vector spacel

X, 9
= Fit neural net 2 find weights matrix W
Word Vectors: xy = W'x o
= Checking dimensions: V-dim

- x:Vx1
- WLNxV

- XN:NX].

[O = O == 00O0]

[eXeXe]|

[eXeXe]| LO

- Q ==

Output layer

Yij

Y2,

Ye;

2 Output layer
[) [) o
Training Word2Vec: What Happened? :
O ij
- Learn words likely to appear near each o
word Input layer B
0 O
O O)
0 O
- This context information ultimately leads to % o o V2,
vectors for related words falling near one
another! o o
V-dim .
5
- Which gives us really good word vectors! 0
Aka “Word Embeddings” o .
J

Do | need to Train Word2Vec?

« Answer: NO!

« You can download pre-trained Word2Vec models trained on massive
corpora of data.

« Common example: Google News Vectors, 300 dimensional vectors for 3
million words, trained on Google News articles.

« File containing vectors (1.5 GB) can be downloaded for free and easily
loaded into gensim.

Nice Properties of Word2Vec Embeddings

- word2vec (somewhat magically!) captures 4
nice geometric relations between words

= e.g.: Analogies man
- King is to Queen as Man is to Woman O

- The vector between King and Queen is the “3
-
I : ~ ‘
same as that between man and woman! king i

-
. . " N
-~ Works for all sorts of things: capitals, cities, ®
etc queen

Software

Word2Vec with Gensim

Input:
from gensim.models.KeyedVectors import load word2vec_format

google model = load word2vec format(google vec file, binary=True)

woman - man + king
print(google model.most_similar(positive=['woman', 'king'], negative=['man'],

topn=3))

Output:

[("queen', 0.7118192911148071),
("monarch', 0.6189674139022827),
('princess', 0.5902431607246399)]

Software

How can we Use Word2Vec?

« Vectors can be combined to create A
features for documents

= e.g. Document Vector is average (or sum)
of its word vectors

« Use Document Vectors for ML on
Documents:

= Classification, Regression

= Clustering

» Recommendation

>

Software

Comparing Word2Vec Embeddings

- How to compare 2 word vectors? - &l
Cosine Similarity
« Cosine Similarity

= Scaled angle between the vectors

= Vector length doesn’t matter - sim(A, B) = cos(0) = ﬁmf;_”
= Makes most sense for word vectors
= Why?)
- e.g.[2, 2, 2] and [4, 4, 4] should be the)
same vector
- I¥'s the ratios of frequencies that define | : ; >

meaning 5 10 15

Word Vector Application: Text Classification

« Problem: Categorizing News Articles

Is document about Politics? Sports?
Science /Tech? etc

w U.S. World | Politics Money Opinion | Health | Entertainment

« Approach:
= Word Vectors 2 Document Vectors

» Classification on Document Vectors

- Often KNN with Cosine Similarity

Software

Word Vector Application: Text Clustering

Problem: Grouping Similar Emails

« Work Emaiils, Bills, Ads, News, etc

Archive @ Reportspam @ Delete Movetow | Labelsw More acticns v Refresh

Select: All, None. Read, Unread, Starred. Unstarred

[0 Sandra, me, Christopher (3)
[J Christopher, Phil (2) Vacat
. [0 Christopher, David (2 Photos from our last tr
« Approach: P (@)
O Markus, me (2) Need co
= Word Vectors > Document Vectors 1 Christopher Semturs

= Clustering on Document Vectors

- Use Cosine Similarity

Software

Word Vector Application: Recommendation

e Problem: Find me news stories | care about!

« Approach:
» Word Vectors 2 Document Vectors
= Suggest documents similar to: How to Tell the Truth Inhe veork realy buttr Unsolved Mystery
a) User search query
b) Example articles that user favorited N, A

Software

Summary

With word vectors, so many possibilities!

Can conceptually compare any bunch of words to any other bunch of words.

Word2Vec finds really good, compact vectors.

= Trains a Neural Network

= On Context Windows

= SkipGram predicts the context words from the middle word in the window.

= CBOW predicts the middle word from the context words in the window.

Word Vectors can be used for all sorts of ML

Software

S
O
ftw
a
re

Software

Word2Vec in Python

Word2Vec in Python - Loading Model

Input:
from gensim.models.KeyedVectors import load word2vec_format
google model = load word2vec format(google vec file, binary=True)

print(type(google model.vocab)) # dictionary
print("{:,}".format(len(google model.vocab.keys()))) # number of words
print(google model.vector _size) # vector size

Output:

dict
3,000,000
300

Software

Word2Vec in Python - Examining Vectors

Input:
bat_vector = google model.word vec('bat"')

print(type(bat_vector))
print(len(bat_vector))
print(bat_vector.shape)
print(bat_vector[:5])

Output:

<class 'numpy.ndarray'>

300

(300,)

[-0.34570312 0.32421875 0.15722656 -0.04223633 -0.28710938]

Software

Word2Vec in Python - Vector Similarity

Input:

print(google model.similarity(‘Bill Clinton’, €‘Barack_Obama'))

print(google model.similarity(‘Bill Clinton', ‘Taylor_ Swift’))

Output:
0.62116989722645277

0.25381746688228518

As expected, Bill Clinton is much more similar to Barack Obama than to Taylor Swift.

Software

Word2Vec in Python - Most Similar Words

Input:

print(google model.similar_ by word('Barack _Obama'))

Output:

[("Obama', 0.8036513328552246),

(

('Barrack Obama', 0.7766816020011902),
('IllanlS senator', 0.757197916507721),
("McCain', 0.7530534863471985),

("Barack', O. 7448185086250305),

('Barack Obama D-I11.', 0.7196038961410522),
('"Hillary Clinton' , 0.6864978075027460),
('Sen. Hillary Clinton', 0.6827855110168457),
('elect Barack Obama', 0.6812860369682312),
('

Clinton', 0.6713168025016785)]

Software

Word2Vec in Python - Analogies

Input:

print(google model.most similar(positive=[‘Paris', 'Spain'],
negative=['France'], topn=2))

print(google model.most similar(positive=[‘Yankees', €‘Boston'],
negative=['New_York'], topn=2)

Output:
[('Madrid', 0.7571904063224792), ('Barcelona', 0.6230698823928833)]

[("Red _Sox', 0.8348262900074524), ('Boston Red Sox', 0.7118345499038696)]

Software

Word2Vec in Python - Odd Word Out

Input:

print(google model.doesnt_match(['breakfast', 'lunch', ‘'dinner', €‘table'])

print(google model.doesnt_match(['baseball', 'basketball', 'football’,
‘mattress']))

Output:
table

mattress

As expected, “table” and “mattress” are the odd words out.

Software

S
O
ftw
a
re

