
Relationships between words: n-grams and correlations

So far we’ve considered words as individual units, and considered their relationships to sentiments or to
documents. However, many interesting text analyses are based on the relationships between words, whether
examining which words tend to follow others immediately, or that tend to co-occur within the same documents.

In this chapter, we’ll explore some of the methods tidytext offers for calculating and visualizing relationships
between words in your text dataset. This includes the token = "ngrams" argument, which tokenizes by
pairs of adjacent words rather than by individual ones. We’ll also introduce two new packages: ggraph,
which extends ggplot2 to construct network plots, and widyr, which calculates pairwise correlations and
distances within a tidy data frame. Together these expand our toolbox for exploring text within the tidy
data framework.

Tokenizing by n-gram

We’ve been using the unnest_tokens function to tokenize by word, or sometimes by sentence, which is useful
for the kinds of sentiment and frequency analyses we’ve been doing so far. But we can also use the function
to tokenize into consecutive sequences of words, called n-grams. By seeing how often word X is followed by
word Y, we can then build a model of the relationships between them.

We do this by adding the token = "ngrams" option to unnest_tokens(), and setting n to the number of
words we wish to capture in each n-gram. When we set n to 2, we are examining pairs of two consecutive
words, often called “bigrams”:
library(dplyr)
library(tidytext)
library(janeaustenr)

austen_bigrams <- austen_books() %>%
unnest_tokens(bigram, text, token = "ngrams", n = 2)

austen_bigrams

A tibble: 725,049 x 2
book bigram
<fct> <chr>
1 Sense & Sensibility sense and
2 Sense & Sensibility and sensibility
3 Sense & Sensibility sensibility by
4 Sense & Sensibility by jane
5 Sense & Sensibility jane austen
6 Sense & Sensibility austen 1811
7 Sense & Sensibility 1811 chapter
8 Sense & Sensibility chapter 1
9 Sense & Sensibility 1 the
10 Sense & Sensibility the family
... with 725,039 more rows

This data structure is still a variation of the tidy text format. It is structured as one-token-per-row (with
extra metadata, such as book, still preserved), but each token now represents a bigram.

Notice that these bigrams overlap: “sense and” is one token, while “and sensibility” is another.

1

https://github.com/thomasp85/ggraph
https://github.com/dgrtwo/widyr

Counting and filtering n-grams

Our usual tidy tools apply equally well to n-gram analysis. We can examine the most common bigrams using
dplyr’s count():
austen_bigrams %>%

count(bigram, sort = TRUE)

A tibble: 211,236 x 2
bigram n
<chr> <int>
1 of the 3017
2 to be 2787
3 in the 2368
4 it was 1781
5 i am 1545
6 she had 1472
7 of her 1445
8 to the 1387
9 she was 1377
10 had been 1299
... with 211,226 more rows

As one might expect, a lot of the most common bigrams are pairs of common (uninteresting) words, such
as of the and to be: what we call “stop-words” (see Chapter @ref(tidytext)). This is a useful time to use
tidyr’s separate(), which splits a column into multiple based on a delimiter. This lets us separate it into
two columns, “word1” and “word2”, at which point we can remove cases where either is a stop-word.
library(tidyr)

bigrams_separated <- austen_bigrams %>%
separate(bigram, c("word1", "word2"), sep = " ")

bigrams_filtered <- bigrams_separated %>%
filter(!word1 %in% stop_words$word) %>%
filter(!word2 %in% stop_words$word)

new bigram counts:
bigram_counts <- bigrams_filtered %>%

count(word1, word2, sort = TRUE)

bigram_counts

A tibble: 33,421 x 3
word1 word2 n
<chr> <chr> <int>
1 sir thomas 287
2 miss crawford 215
3 captain wentworth 170
4 miss woodhouse 162
5 frank churchill 132
6 lady russell 118
7 lady bertram 114
8 sir walter 113
9 miss fairfax 109
10 colonel brandon 108

2

... with 33,411 more rows

We can see that names (whether first and last or with a salutation) are the most common pairs in Jane
Austen books.

In other analyses, we may want to work with the recombined words. tidyr’s unite() function is the inverse
of separate(), and lets us recombine the columns into one. Thus, “separate/filter/count/unite” let us find
the most common bigrams not containing stop-words.
bigrams_united <- bigrams_filtered %>%

unite(bigram, word1, word2, sep = " ")

bigrams_united

A tibble: 44,784 x 2
book bigram
<fct> <chr>
1 Sense & Sensibility jane austen
2 Sense & Sensibility austen 1811
3 Sense & Sensibility 1811 chapter
4 Sense & Sensibility chapter 1
5 Sense & Sensibility norland park
6 Sense & Sensibility surrounding acquaintance
7 Sense & Sensibility late owner
8 Sense & Sensibility advanced age
9 Sense & Sensibility constant companion
10 Sense & Sensibility happened ten
... with 44,774 more rows

In other analyses you may be interested in the most common trigrams, which are consecutive sequences of 3
words. We can find this by setting n = 3:
austen_books() %>%

unnest_tokens(trigram, text, token = "ngrams", n = 3) %>%
separate(trigram, c("word1", "word2", "word3"), sep = " ") %>%
filter(!word1 %in% stop_words$word,

!word2 %in% stop_words$word,
!word3 %in% stop_words$word) %>%

count(word1, word2, word3, sort = TRUE)

A tibble: 8,757 x 4
word1 word2 word3 n
<chr> <chr> <chr> <int>
1 dear miss woodhouse 23
2 miss de bourgh 18
3 lady catherine de 14
4 catherine de bourgh 13
5 poor miss taylor 11
6 sir walter elliot 11
7 ten thousand pounds 11
8 dear sir thomas 10
9 twenty thousand pounds 8
10 replied miss crawford 7
... with 8,747 more rows

3

Analyzing bigrams

This one-bigram-per-row format is helpful for exploratory analyses of the text. As a simple example, we
might be interested in the most common “streets” mentioned in each book:
bigrams_filtered %>%

filter(word2 == "street") %>%
count(book, word1, sort = TRUE)

A tibble: 34 x 3
book word1 n
<fct> <chr> <int>
1 Sense & Sensibility berkeley 16
2 Sense & Sensibility harley 16
3 Northanger Abbey pulteney 14
4 Northanger Abbey milsom 11
5 Mansfield Park wimpole 10
6 Pride & Prejudice gracechurch 9
7 Sense & Sensibility conduit 6
8 Sense & Sensibility bond 5
9 Persuasion milsom 5
10 Persuasion rivers 4
... with 24 more rows

A bigram can also be treated as a term in a document in the same way that we treated individual words. For
example, we can look at the tf-idf (Chapter @ref(tfidf)) of bigrams across Austen novels. These tf-idf values
can be visualized within each book, just as we did for words (Figure @ref(fig:bigramtfidf)).
bigram_tf_idf <- bigrams_united %>%

count(book, bigram) %>%
bind_tf_idf(bigram, book, n) %>%
arrange(desc(tf_idf))

bigram_tf_idf

A tibble: 36,217 x 6
book bigram n tf idf tf_idf
<fct> <chr> <int> <dbl> <dbl> <dbl>
1 Persuasion captain wentworth 170 0.0299 1.79 0.0535
2 Mansfield Park sir thomas 287 0.0287 1.79 0.0515
3 Mansfield Park miss crawford 215 0.0215 1.79 0.0386
4 Persuasion lady russell 118 0.0207 1.79 0.0371
5 Persuasion sir walter 113 0.0198 1.79 0.0356
6 Emma miss woodhouse 162 0.0170 1.79 0.0305
7 Northanger Abbey miss tilney 82 0.0159 1.79 0.0286
8 Sense & Sensibility colonel brandon 108 0.0150 1.79 0.0269
9 Emma frank churchill 132 0.0139 1.79 0.0248
10 Pride & Prejudice lady catherine 100 0.0138 1.79 0.0247
... with 36,207 more rows

Much as we discovered in Chapter @ref(tfidf), the units that distinguish each Austen book are almost
exclusively names. We also notice some pairings of a common verb and a name, such as “replied elizabeth” in
Pride & Prejudice, or “cried emma” in Emma.

There are advantages and disadvantages to examining the tf-idf of bigrams rather than individual words. Pairs
of consecutive words might capture structure that isn’t present when one is just counting single words, and
may provide context that makes tokens more understandable (for example, “pulteney street”, in Northanger

4

Northanger Abbey Persuasion

Mansfield Park Emma

Sense & Sensibility Pride & Prejudice

0.00 0.01 0.02 0.00 0.02 0.04

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03

0.00 0.01 0.02 0.000 0.005 0.010 0.015 0.020 0.025

lady lucas

replied elizabeth

miss de

miss lucas

sir william

colonel fitzwilliam

colonel forster

miss darcy

de bourgh

miss bennet

miss bingley

lady catherine

cried emma

harriet smith

robert martin

dear emma

maple grove

miss smith

miss taylor

john knightley

jane fairfax

miss bates

miss fairfax

frank churchill

miss woodhouse

anne elliot

lady dalrymple

kellynch hall

captain wentworth's

lady russell's

captain harville

charles hayter

miss elliot

captain benwick

sir walter

lady russell

captain wentworth

berkeley street
harley street

miss marianne
miss dashwoods

colonel brandon's
cried marianne

replied elinor
miss steele

miss steeles
john dashwood
miss dashwood
lady middleton

sir john
colonel brandon

aunt norris

miss bertrams

mansfield park

miss price

sir thomas's

miss bertram

dr grant

henry crawford

miss crawford's

lady bertram

miss crawford

sir thomas

edgar's buildings
miss morland's

miss thorpe's
pulteney street

miss tilney's
dearest catherine

cried catherine
henry tilney
john thorpe

dear catherine
captain tilney

miss thorpe
miss morland

miss tilney

tf−idf of bigram to novel

Figure 1: The 12 bigrams with the highest tf-idf from each Jane Austen novel

5

Abbey, is more informative than “pulteney”). However, the per-bigram counts are also sparser : a typical
two-word pair is rarer than either of its component words. Thus, bigrams can be especially useful when you
have a very large text dataset.

Using bigrams to provide context in sentiment analysis

Our sentiment analysis approach in Chapter @ref(sentiment) simply counted the appearance of positive or
negative words, according to a reference lexicon. One of the problems with this approach is that a word’s
context can matter nearly as much as its presence. For example, the words “happy” and “like” will be counted
as positive, even in a sentence like “I’m not happy and I don’t like it!”

Now that we have the data organized into bigrams, it’s easy to tell how often words are preceded by a word
like “not”:
bigrams_separated %>%

filter(word1 == "not") %>%
count(word1, word2, sort = TRUE)

A tibble: 1,246 x 3
word1 word2 n
<chr> <chr> <int>
1 not be 610
2 not to 355
3 not have 327
4 not know 252
5 not a 189
6 not think 176
7 not been 160
8 not the 147
9 not at 129
10 not in 118
... with 1,236 more rows

By performing sentiment analysis on the bigram data, we can examine how often sentiment-associated words
are preceded by “not” or other negating words. We could use this to ignore or even reverse their contribution
to the sentiment score.

Let’s use the AFINN lexicon for sentiment analysis, which you may recall gives a numeric sentiment score for
each word, with positive or negative numbers indicating the direction of the sentiment.
AFINN <- get_sentiments("afinn")

AFINN

A tibble: 2,476 x 2
word score
<chr> <int>
1 abandon -2
2 abandoned -2
3 abandons -2
4 abducted -2
5 abduction -2
6 abductions -2
7 abhor -3
8 abhorred -3
9 abhorrent -3

6

10 abhors -3
... with 2,466 more rows

We can then examine the most frequent words that were preceded by “not” and were associated with a
sentiment.
not_words <- bigrams_separated %>%

filter(word1 == "not") %>%
inner_join(AFINN, by = c(word2 = "word")) %>%
count(word2, score, sort = TRUE)

not_words

A tibble: 245 x 3
word2 score n
<chr> <int> <int>
1 like 2 99
2 help 2 82
3 want 1 45
4 wish 1 39
5 allow 1 36
6 care 2 23
7 sorry -1 21
8 leave -1 18
9 pretend -1 18
10 worth 2 17
... with 235 more rows

For example, the most common sentiment-associated word to follow “not” was “like”, which would normally
have a (positive) score of 2.

It’s worth asking which words contributed the most in the “wrong” direction. To compute that, we can
multiply their score by the number of times they appear (so that a word with a score of +3 occurring 10
times has as much impact as a word with a sentiment score of +1 occurring 30 times). We visualize the result
with a bar plot (Figure @ref(fig:notwordsplot)).
library(ggplot2)

not_words %>%
mutate(contribution = n * score) %>%
arrange(desc(abs(contribution))) %>%
head(20) %>%
mutate(word2 = reorder(word2, contribution)) %>%
ggplot(aes(word2, n * score, fill = n * score > 0)) +
geom_col(show.legend = FALSE) +
xlab("Words preceded by \"not\"") +
ylab("Sentiment score * number of occurrences") +
coord_flip()

The bigrams “not like” and “not help” were overwhelmingly the largest causes of misidentification, making
the text seem much more positive than it is. But we can see phrases like “not afraid” and “not fail” sometimes
suggest text is more negative than it is.

“Not” isn’t the only term that provides some context for the following word. We could pick four common
words (or more) that negate the subsequent term, and use the same joining and counting approach to examine
all of them at once.

7

afraid

fail

sorry

miss

deceive

deceived

despair

leave

pretend

dislike

fair

perfectly

worth

allow

wish

want

care

love

help

like

0 50 100 150 200

Sentiment score * number of occurrences

W
or

ds
 p

re
ce

de
d

by
 "

no
t"

Figure 2: The 20 words preceded by ‘not’ that had the greatest contribution to sentiment scores, in either a
positive or negative direction

8

negation_words <- c("not", "no", "never", "without")

negated_words <- bigrams_separated %>%
filter(word1 %in% negation_words) %>%
inner_join(AFINN, by = c(word2 = "word")) %>%
count(word1, word2, score, sort = TRUE)

We could then visualize what the most common words to follow each particular negation are (Figure
@ref(fig:negatedwords)). While “not like” and “not help” are still the two most common examples, we can
also see pairings such as “no great” and “never loved.” We could combine this with the approaches in Chapter
@ref(sentiment) to reverse the AFINN scores of each word that follows a negation. These are just a few
examples of how finding consecutive words can give context to text mining methods.

Visualizing a network of bigrams with ggraph

We may be interested in visualizing all of the relationships among words simultaneously, rather than just the
top few at a time. As one common visualization, we can arrange the words into a network, or “graph.” Here
we’ll be referring to a “graph” not in the sense of a visualization, but as a combination of connected nodes. A
graph can be constructed from a tidy object since it has three variables:

• from: the node an edge is coming from
• to: the node an edge is going towards
• weight: A numeric value associated with each edge

The igraph package has many powerful functions for manipulating and analyzing networks. One way to
create an igraph object from tidy data is the graph_from_data_frame() function, which takes a data frame
of edges with columns for “from”, “to”, and edge attributes (in this case n):
library(igraph)

original counts
bigram_counts

A tibble: 33,421 x 3
word1 word2 n
<chr> <chr> <int>
1 sir thomas 287
2 miss crawford 215
3 captain wentworth 170
4 miss woodhouse 162
5 frank churchill 132
6 lady russell 118
7 lady bertram 114
8 sir walter 113
9 miss fairfax 109
10 colonel brandon 108
... with 33,411 more rows
filter for only relatively common combinations
bigram_graph <- bigram_counts %>%

filter(n > 20) %>%
graph_from_data_frame()

bigram_graph

IGRAPH adaa6d9 DN-- 91 77 --

9

http://igraph.org/

not without

never no

0 50 100 150 200 −15 −10 −5 0 5 10

−10 0 10 −100 −50 0 50

doubt

no

harm

danger

bad

evil

greater

chance

hope

good

pleasure

great

betraying

interruption

losing

delay

loss

anger

pain

hope

hopes

love

affection

great

feeling

failed

forget

failing

disgrace

tired

agree

brilliant

consent

hope

like

rejoiced

worth

allow

happy

liked

want

loved

afraid

fail

sorry

perfectly

worth

allow

wish

want

care

love

help

like

Sentiment score * # of occurrences

W
or

ds
 p

re
ce

de
d

by
 n

eg
at

io
n

te
rm

Figure 3: The most common positive or negative words to follow negations such as ‘never’, ‘no’, ‘not’, and
‘without’

10

+ attr: name (v/c), n (e/n)
+ edges from adaa6d9 (vertex names):
[1] sir ->thomas miss ->crawford captain ->wentworth miss ->woodhouse
[5] frank ->churchill lady ->russell lady ->bertram sir ->walter
[9] miss ->fairfax colonel ->brandon miss ->bates lady ->catherine
[13] sir ->john jane ->fairfax miss ->tilney lady ->middleton
[17] miss ->bingley thousand->pounds miss ->dashwood miss ->bennet
[21] john ->knightley miss ->morland captain ->benwick dear ->miss
[25] miss ->smith miss ->crawford's henry ->crawford miss ->elliot
[29] dr ->grant miss ->bertram sir ->thomas's ten ->minutes
+ ... omitted several edges

igraph has plotting functions built in, but they’re not what the package is designed to do, so many other
packages have developed visualization methods for graph objects. We recommend the ggraph package
[@R-ggraph], because it implements these visualizations in terms of the grammar of graphics, which we are
already familiar with from ggplot2.

We can convert an igraph object into a ggraph with the ggraph function, after which we add layers to it,
much like layers are added in ggplot2. For example, for a basic graph we need to add three layers: nodes,
edges, and text.
library(ggraph)
set.seed(2017)

ggraph(bigram_graph, layout = "fr") +
geom_edge_link() +
geom_node_point() +
geom_node_text(aes(label = name), vjust = 1, hjust = 1)

In Figure @ref(fig:bigramgraph), we can visualize some details of the text structure. For example, we see
that salutations such as “miss”, “lady”, “sir”, “and”colonel" form common centers of nodes, which are often
followed by names. We also see pairs or triplets along the outside that form common short phrases (“half
hour”, “thousand pounds”, or “short time/pause”).

We conclude with a few polishing operations to make a better looking graph (Figure @ref(fig:bigramggraphausten2)):

• We add the edge_alpha aesthetic to the link layer to make links transparent based on how common or
rare the bigram is

• We add directionality with an arrow, constructed using grid::arrow(), including an end_cap option
that tells the arrow to end before touching the node

• We tinker with the options to the node layer to make the nodes more attractive (larger, blue points)
• We add a theme that’s useful for plotting networks, theme_void()

set.seed(2016)

a <- grid::arrow(type = "closed", length = unit(.15, "inches"))

ggraph(bigram_graph, layout = "fr") +
geom_edge_link(aes(edge_alpha = n), show.legend = FALSE,

arrow = a, end_cap = circle(.07, 'inches')) +
geom_node_point(color = "lightblue", size = 5) +
geom_node_text(aes(label = name), vjust = 1, hjust = 1) +
theme_void()

It may take some experimentation with ggraph to get your networks into a presentable format like this, but
the network structure is useful and flexible way to visualize relational tidy data.

Note that this is a visualization of a Markov chain, a common model in text processing. In a Markov chain,

11

sir

miss

captain

frank

lady

colonel

jane

thousand

john

dear

henry

dr

ten
de

mansfield

charles

maple

cried

half

harriet

robert

short

replied

kellynch

low

anne

aunt

thomas

crawford

wentworth

woodhouse

churchill

russell

bertram

walter

fairfax

brandon

bates

catherine

tilney

middleton

bingley

pounds

dashwood

bennet

knightley

morland

benwick

smith

crawford's elliot

grant

thomas's

minutes

price

taylor
william

bourgh

fanny

darcy

park

harville
hayter

emma

grove

russell's

steeles

hour

steele

martin

time

wentworth's

forster

bertrams

elinor

fitzwilliam

elizabeth

marianne

hall

voice

thorpe

brandon's

madam

dalrymple

dashwoods

lucas

pause

musgroves

norris

campbell

wallis

0

5

10

0 5 10 15

x

y

Figure 4: Common bigrams in Jane Austen’s novels, showing those that occurred more than 20 times and
where neither word was a stop word

12

sir

miss

captain

franklady

colonel

jane

thousand

john

dear

henry

dr

ten

de

mansfield

charles

maple

cried

half

harriet

robert

short

replied

kellynch

low

anne

aunt

thomas

crawford

wentworth

woodhouse

churchill

russell

bertram

walter

fairfax

brandon

bates

catherine

tilney

middleton

bingley

pounds

dashwood

bennet

knightley

morland

benwick

smith

crawford's

elliot

grant

thomas's

minutes

price

taylor

william

bourgh

fanny

darcy

park

harville

hayter

emma

grove

russell's

steeles

hour

steele

martin

time

wentworth's

forster

bertrams
elinor

fitzwilliam

elizabeth

marianne

hall

voice

thorpe

brandon's

madam

dalrymple

dashwoods

lucas

pause

musgroves

norris

campbellwallis

Figure 5: Common bigrams in Jane Austen’s novels, with some polishing

13

each choice of word depends only on the previous word. In this case, a random generator following this model
might spit out “dear”, then “sir”, then “william/walter/thomas/thomas’s”, by following each word to the
most common words that follow it. To make the visualization interpretable, we chose to show only the most
common word to word connections, but one could imagine an enormous graph representing all connections
that occur in the text.

Visualizing bigrams in other texts

We went to a good amount of work in cleaning and visualizing bigrams on a text dataset, so let’s collect it
into a function so that we easily perform it on other text datasets.

To make it easy to use the count_bigrams() and visualize_bigrams() yourself, we’ve also reloaded the
packages necessary for them.
library(dplyr)
library(tidyr)
library(tidytext)
library(ggplot2)
library(igraph)
library(ggraph)

count_bigrams <- function(dataset) {
dataset %>%

unnest_tokens(bigram, text, token = "ngrams", n = 2) %>%
separate(bigram, c("word1", "word2"), sep = " ") %>%
filter(!word1 %in% stop_words$word,

!word2 %in% stop_words$word) %>%
count(word1, word2, sort = TRUE)

}

visualize_bigrams <- function(bigrams) {
set.seed(2016)
a <- grid::arrow(type = "closed", length = unit(.15, "inches"))

bigrams %>%
graph_from_data_frame() %>%
ggraph(layout = "fr") +
geom_edge_link(aes(edge_alpha = n), show.legend = FALSE, arrow = a) +
geom_node_point(color = "lightblue", size = 5) +
geom_node_text(aes(label = name), vjust = 1, hjust = 1) +
theme_void()

}

At this point, we could visualize bigrams in other works, such as the King James Version of the Bible:
the King James version is book 10 on Project Gutenberg:
library(gutenbergr)
kjv <- gutenberg_download(10)

library(stringr)

kjv_bigrams <- kjv %>%
count_bigrams()

filter out rare combinations, as well as digits

14

thou

lord

thy

shalt

jesus

burnt

god

pray

hast
thine

wilt

meatsin

art

holy

peace

mine

chief

father's

people

commanded
christ

hath

thee

sabbath seventh

king's

loud

king

ten

beseech

sweet

unleavened

behold

eat

mercy

son

offering

servant

hand

spake

mayest
heart

father

servants

eyes

ghost

offerings

didst

seed

brother
priests

house

answered

israel

enemies

moses

knowest

word

spoken

soul

day

shouldest wast

mouth

sons

voice

solomon

thousand

fathers

land

givethsaith

savour

sight

bread

endureth

reigned

Figure 6: Directed graph of common bigrams in the King James Bible, showing those that occurred more
than 40 times

kjv_bigrams %>%
filter(n > 40,

!str_detect(word1, "\\d"),
!str_detect(word2, "\\d")) %>%

visualize_bigrams()

Figure @ref(fig:kjvbigrams) thus lays out a common “blueprint” of language within the Bible, particularly
focused around “thy” and “thou” (which could probably be considered stopwords!) You can use the gutenbergr
package and these count_bigrams/visualize_bigrams functions to visualize bigrams in other classic books
you’re interested in.

Counting and correlating pairs of words with the widyr package

Tokenizing by n-gram is a useful way to explore pairs of adjacent words. However, we may also be interested
in words that tend to co-occur within particular documents or particular chapters, even if they don’t occur
next to each other.

Tidy data is a useful structure for comparing between variables or grouping by rows, but it can be challenging
to compare between rows: for example, to count the number of times that two words appear within the same
document, or to see how correlated they are. Most operations for finding pairwise counts or correlations need
to turn the data into a wide matrix first.

We’ll examine some of the ways tidy text can be turned into a wide matrix in Chapter @ref(dtm), but in this

15

Figure 7: The philosophy behind the widyr package, which can perform operations such as counting and
correlating on pairs of values in a tidy dataset. The widyr package first ’casts’ a tidy dataset into a wide
matrix, performs an operation such as a correlation on it, then re-tidies the result.

16

case it isn’t necessary. The widyr package makes operations such as computing counts and correlations easy,
by simplifying the pattern of “widen data, perform an operation, then re-tidy data” (Figure @ref(fig:widyr)).
We’ll focus on a set of functions that make pairwise comparisons between groups of observations (for example,
between documents, or sections of text).

Counting and correlating among sections

Consider the book “Pride and Prejudice” divided into 10-line sections, as we did (with larger sections) for
sentiment analysis in Chapter @ref(sentiment). We may be interested in what words tend to appear within
the same section.
austen_section_words <- austen_books() %>%

filter(book == "Pride & Prejudice") %>%
mutate(section = row_number() %/% 10) %>%
filter(section > 0) %>%
unnest_tokens(word, text) %>%
filter(!word %in% stop_words$word)

austen_section_words

A tibble: 37,240 x 3
book section word
<fct> <dbl> <chr>
1 Pride & Prejudice 1 truth
2 Pride & Prejudice 1 universally
3 Pride & Prejudice 1 acknowledged
4 Pride & Prejudice 1 single
5 Pride & Prejudice 1 possession
6 Pride & Prejudice 1 fortune
7 Pride & Prejudice 1 wife
8 Pride & Prejudice 1 feelings
9 Pride & Prejudice 1 views
10 Pride & Prejudice 1 entering
... with 37,230 more rows

One useful function from widyr is the pairwise_count() function. The prefix pairwise_ means it will result
in one row for each pair of words in the word variable. This lets us count common pairs of words co-appearing
within the same section:
library(widyr)

count words co-occuring within sections
word_pairs <- austen_section_words %>%

pairwise_count(word, section, sort = TRUE)

word_pairs

A tibble: 796,008 x 3
item1 item2 n
<chr> <chr> <dbl>
1 darcy elizabeth 144
2 elizabeth darcy 144
3 miss elizabeth 110
4 elizabeth miss 110
5 elizabeth jane 106

17

https://github.com/dgrtwo/widyr

6 jane elizabeth 106
7 miss darcy 92
8 darcy miss 92
9 elizabeth bingley 91
10 bingley elizabeth 91
... with 795,998 more rows

Notice that while the input had one row for each pair of a document (a 10-line section) and a word, the
output has one row for each pair of words. This is also a tidy format, but of a very different structure that
we can use to answer new questions.

For example, we can see that the most common pair of words in a section is “Elizabeth” and “Darcy” (the
two main characters). We can easily find the words that most often occur with Darcy:
word_pairs %>%

filter(item1 == "darcy")

A tibble: 2,930 x 3
item1 item2 n
<chr> <chr> <dbl>
1 darcy elizabeth 144
2 darcy miss 92
3 darcy bingley 86
4 darcy jane 46
5 darcy bennet 45
6 darcy sister 45
7 darcy time 41
8 darcy lady 38
9 darcy friend 37
10 darcy wickham 37
... with 2,920 more rows

Pairwise correlation

Pairs like “Elizabeth” and “Darcy” are the most common co-occurring words, but that’s not particularly
meaningful since they’re also the most common individual words. Wemay instead want to examine correlation
among words, which indicates how often they appear together relative to how often they appear separately.

In particular, here we’ll focus on the phi coefficient, a common measure for binary correlation. The focus of
the phi coefficient is how much more likely it is that either both word X and Y appear, or neither do, than
that one appears without the other.

Consider the following table:

Has word Y No word Y Total
Has word X n11 n10 n1·
No word X n01 n00 n0·
Total n·1 n·0 n

For example, that n11 represents the number of documents where both word X and word Y appear, n00 the
number where neither appears, and n10 and n01 the cases where one appears without the other. In terms of
this table, the phi coefficient is:

φ = n11n00 − n10n01√
n1·n0·n·0n·1

18

https://en.wikipedia.org/wiki/Phi_coefficient

The phi coefficient is equivalent to the Pearson correlation, which you may have heard of elsewhere, when it
is applied to binary data).

The pairwise_cor() function in widyr lets us find the phi coefficient between words based on how often
they appear in the same section. Its syntax is similar to pairwise_count().
we need to filter for at least relatively common words first
word_cors <- austen_section_words %>%

group_by(word) %>%
filter(n() >= 20) %>%
pairwise_cor(word, section, sort = TRUE)

word_cors

A tibble: 154,842 x 3
item1 item2 correlation
<chr> <chr> <dbl>
1 bourgh de 0.951
2 de bourgh 0.951
3 pounds thousand 0.701
4 thousand pounds 0.701
5 william sir 0.664
6 sir william 0.664
7 catherine lady 0.663
8 lady catherine 0.663
9 forster colonel 0.622
10 colonel forster 0.622
... with 154,832 more rows

This output format is helpful for exploration. For example, we could find the words most correlated with a
word like “pounds” using a filter operation.
word_cors %>%

filter(item1 == "pounds")

A tibble: 393 x 3
item1 item2 correlation
<chr> <chr> <dbl>
1 pounds thousand 0.701
2 pounds ten 0.231
3 pounds fortune 0.164
4 pounds settled 0.149
5 pounds wickham's 0.142
6 pounds children 0.129
7 pounds mother's 0.119
8 pounds believed 0.0932
9 pounds estate 0.0890
10 pounds ready 0.0860
... with 383 more rows

This lets us pick particular interesting words and find the other words most associated with them (Figure
@ref(fig:wordcors)).
word_cors %>%

filter(item1 %in% c("elizabeth", "pounds", "married", "pride")) %>%
group_by(item1) %>%
top_n(6) %>%

19

ungroup() %>%
mutate(item2 = reorder(item2, correlation)) %>%
ggplot(aes(item2, correlation)) +
geom_bar(stat = "identity") +
facet_wrap(~ item1, scales = "free") +
coord_flip()

Just as we used ggraph to visualize bigrams, we can use it to visualize the correlations and clusters of words
that were found by the widyr package (Figure @ref(fig:wordcorsnetwork)).
set.seed(2016)

word_cors %>%
filter(correlation > .15) %>%
graph_from_data_frame() %>%
ggraph(layout = "fr") +
geom_edge_link(aes(edge_alpha = correlation), show.legend = FALSE) +
geom_node_point(color = "lightblue", size = 5) +
geom_node_text(aes(label = name), repel = TRUE) +
theme_void()

Note that unlike the bigram analysis, the relationships here are symmetrical, rather than directional (there
are no arrows). We can also see that while pairings of names and titles that dominated bigram pairings are
common, such as “colonel/fitzwilliam”, we can also see pairings of words that appear close to each other,
such as “walk” and “park”, or “dance” and “ball”.

Summary

This chapter showed how the tidy text approach is useful not only for analyzing individual words, but also
for exploring the relationships and connections between words. Such relationships can involve n-grams, which
enable us to see what words tend to appear after others, or co-occurences and correlations, for words that
appear in proximity to each other. This chapter also demonstrated the ggraph package for visualizing both
of these types of relationships as networks. These network visualizations are a flexible tool for exploring
relationships, and will play an important role in the case studies in later chapters.

20

pounds pride

elizabeth married

0.0 0.2 0.4 0.6 0.00 0.05 0.10 0.15

0.000 0.025 0.050 0.075 0.100 0.00 0.05 0.10

dear

daughter

write

lydia

lydia's

news

rest

gratitude

sense

amiable

real

proud

answered

door

listened

sat

walked

looked

children

wickham's

settled

fortune

ten

thousand

correlation

ite
m

2

Figure 8: Words from Pride and Prejudice that were most correlated with ‘elizabeth’, ‘pounds’, ‘married’,
and ‘pride’

21

bourgh

de

pounds

thousand

william

sir

catherine

lady

forster

colonel

fitzwilliam

uncleaunt

hour

half

dance

ball

ten

kittylydia

ladyship

charlotte

lucas

carriage

door

money

marry

collins

niece
gardiner

miss

bingley

brighton

lydia's
hurst

dancing

mary

minuteswalk

park

netherfield

assured

truth

bennet

silence

london

left

rosings

expression

eyes

entered

fixed

excellent

understanding

master

letter

wrote

amiable

estate

darcy

pride

proud

daughter

lizzy

dear

daughters

handsome

fine

sort

girl

meryton

news

read

hunsford

favour
stayhome

fortune

temper

her

officers

father

mother

happiness

situation

library

remember

disposition

gratitude

prevented

regard

person

gentleman

scarcely

spoke

reason

fear

children

call

cousin

week

dinner

returned mind

write

pray

pretty

spent

evening

walking

gentlemen

bennet's

concern

eliza

express

poor

Figure 9: Pairs of words in Pride and Prejudice that show at least a .15 correlation of appearing within the
same 10-line section

22

	Relationships between words: n-grams and correlations
	Tokenizing by n-gram
	Counting and filtering n-grams
	Analyzing bigrams
	Using bigrams to provide context in sentiment analysis
	Visualizing a network of bigrams with ggraph
	Visualizing bigrams in other texts

	Counting and correlating pairs of words with the widyr package
	Counting and correlating among sections
	Pairwise correlation

	Summary

