Chapter 9 Statistical Foundations

Samples and Populations

The population considered in the book is contained in the nycflights13 dataset. In the nycflights13 dataset contains all of the departing flights from airports in the NYC Area.

library(pacman)

p_load(mdsr, nycflights13, tidyverse, skimr)

Recall the flights dataframe.

flights
# A tibble: 336,776 × 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013     1     1      517            515         2      830            819
 2  2013     1     1      533            529         4      850            830
 3  2013     1     1      542            540         2      923            850
 4  2013     1     1      544            545        -1     1004           1022
 5  2013     1     1      554            600        -6      812            837
 6  2013     1     1      554            558        -4      740            728
 7  2013     1     1      555            600        -5      913            854
 8  2013     1     1      557            600        -3      709            723
 9  2013     1     1      557            600        -3      838            846
10  2013     1     1      558            600        -2      753            745
# ℹ 336,766 more rows
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>

Take a sample of flights from NYC to SF. Get all of the flights to SF and take a sample of 25 of them.

Note that I did not set a seed for the sample, so your answers will differ from what is in the book.

SF <- flights |>  
  filter(dest == "SFO", !is.na(arr_delay))
SF
# A tibble: 13,173 × 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013     1     1      558            600        -2      923            937
 2  2013     1     1      611            600        11      945            931
 3  2013     1     1      655            700        -5     1037           1045
 4  2013     1     1      729            730        -1     1049           1115
 5  2013     1     1      734            737        -3     1047           1113
 6  2013     1     1      745            745         0     1135           1125
 7  2013     1     1      746            746         0     1119           1129
 8  2013     1     1      803            800         3     1132           1144
 9  2013     1     1      826            817         9     1145           1158
10  2013     1     1     1029           1030        -1     1427           1355
# ℹ 13,163 more rows
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>
sf_25 <- SF |> 
  slice_sample(n = 25)
sf_25
# A tibble: 25 × 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013     3    24     1855           1855         0     2207           2240
 2  2013     5    29     1851           1855        -4     2307           2215
 3  2013     4     8     1029           1027         2     1356           1359
 4  2013     9    12     1904           1730        94     2357           2100
 5  2013     7    30     1606           1609        -3     1948           1928
 6  2013    12     9     1435           1430         5     1757           1757
 7  2013    10     2     1528           1530        -2     1851           1845
 8  2013     7    22     1854           1900        -6       18           2240
 9  2013    10     1     1026           1025         1     1317           1340
10  2013     2    18     1134           1049        45     1448           1431
# ℹ 15 more rows
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>

Get the summary statistics for the sample taken.

sf_25 |> 
  skim(arr_delay)
Data summary
Name sf_25
Number of rows 25
Number of columns 19
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
arr_delay 0 1 17.8 56.07 -69 -6 5 17 177 ▃▇▁▁▁

Since the SF dataset contains all flights from NYC to SF in 2013, the statistics computed from the SF dataset are the calculated population paramaters.

SF |> 
  skim(arr_delay)
Data summary
Name SF
Number of rows 13173
Number of columns 19
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
arr_delay 0 1 2.67 47.67 -86 -23 -8 12 1007 ▇▁▁▁▁

Get the 98th percentile of the sample.

sf_25  |> 
  summarize(q98 = quantile(arr_delay, p = 0.98))
# A tibble: 1 × 1
    q98
  <dbl>
1  157.

Get the estimated proportion of flights to SF with a delay less than 90 minutes.

SF |> 
  group_by(arr_delay < 90)  |> 
  count()  |> 
  mutate(pct = n / nrow(SF))
# A tibble: 2 × 3
# Groups:   arr_delay < 90 [2]
  `arr_delay < 90`     n    pct
  <lgl>            <int>  <dbl>
1 FALSE              640 0.0486
2 TRUE             12533 0.951 

Compare with the 98th percentile. 90 minutes is the 95th percentile.

SF  |> 
  summarize(q98 = quantile(arr_delay, p = 0.98))
# A tibble: 1 × 1
    q98
  <dbl>
1   153

Sample Statistics

The sampling distribution.

Usually sampling is done without replacement.

n <- 25
SF |> 
  slice_sample(n = n)  |> 
  summarize(mean_arr_delay = mean(arr_delay))
# A tibble: 1 × 1
  mean_arr_delay
           <dbl>
1          -0.48

Note that different random sample produce different values for the sample statistic.

SF |>
  slice_sample(n = n) |>
  summarize(mean_arr_delay = mean(arr_delay))
# A tibble: 1 × 1
  mean_arr_delay
           <dbl>
1           2.24

Using simulation we can approximate the sampling distribution of the sample statistics. Here we are computing the mean, but we could do this for any statistic we are interested in, the median, sample variance, sample standard deviation, etc.

num_trials <- 500
sf_25_means <- 1:num_trials |>
  map_dfr(
    ~ SF |>
      slice_sample(n = n) |>
      summarize(mean_arr_delay = mean(arr_delay))
  ) |>
  mutate(n = n)

head(sf_25_means)
# A tibble: 6 × 2
  mean_arr_delay     n
           <dbl> <dbl>
1          16.3     25
2           6.36    25
3           8.72    25
4           2.56    25
5          -1.56    25
6          -5.4     25

Summarize the sample means.

sf_25_means |>
  skim(mean_arr_delay)
Data summary
Name sf_25_means
Number of rows 500
Number of columns 2
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
mean_arr_delay 0 1 2.39 9.09 -22.76 -4.02 1.3 7.88 34 ▁▇▇▃▁

Confidence intervals

sf_25_means |>
  summarize(
    x_bar = mean(mean_arr_delay),
    se = sd(mean_arr_delay)
  ) |>
  mutate(
    ci_lower = x_bar - 2 * se, # approximately 95% of observations 
    ci_upper = x_bar + 2 * se  # are within two standard errors
  ) 
# A tibble: 1 × 4
  x_bar    se ci_lower ci_upper
  <dbl> <dbl>    <dbl>    <dbl>
1  2.39  9.09    -15.8     20.6

Using a larger sample size give a smaller Standard Error.

n <- 100
sf_100_means <- 1:500 |>
  map_dfr(
    ~ SF |>
      slice_sample(n = n) |>
      summarize(mean_arr_delay = mean(arr_delay))
  ) |>
  mutate(n = n)

Plots to compare the sampling distributions with different sample sizes.

sf_25_means |>
  bind_rows(sf_100_means) |>
  ggplot(aes(x = mean_arr_delay)) + 
  geom_histogram(bins = 30) + 
  facet_grid( ~ n) + 
  xlab("Sample mean")

Boostrap

Usually for random sampling we sample without replacement.

three_flights <- SF |>
  slice_sample(n = 3, replace = FALSE) |>
  select(year, month, day, dep_time)
three_flights
# A tibble: 3 × 4
   year month   day dep_time
  <int> <int> <int>    <int>
1  2013     8    10     1026
2  2013     3    27     1651
3  2013     9    23     2020

With the Bootstrap we use sampling with replacement

three_flights |> slice_sample(n = 3, replace = TRUE)
# A tibble: 3 × 4
   year month   day dep_time
  <int> <int> <int>    <int>
1  2013     9    23     2020
2  2013     3    27     1651
3  2013     8    10     1026
n <- 200
orig_sample <- SF |> 
  slice_sample(n = n, replace = FALSE)
orig_sample
# A tibble: 200 × 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013     3    20      607            600         7      941            925
 2  2013    10    29     1555           1555         0     1944           1939
 3  2013     7     8     1802           1710        52     2144           2035
 4  2013     6    12     1154           1147         7     1506           1454
 5  2013     3     3     1723           1725        -2     2047           2050
 6  2013     5    26      858            800        58     1210           1135
 7  2013     7    13     1155           1130        25     1442           1446
 8  2013    11     7      846            850        -4     1209           1228
 9  2013    12    12     1709           1710        -1     2021           2045
10  2013    11    24     1129           1030        59     1424           1355
# ℹ 190 more rows
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>

The reason for sampling with replacement is that we only have the Original Sample of size \(n\). We do not have the population. So if we sampled with out replacement we would only have one sample to look at. Sampling the Original Sample with replace allow us to general lots of samples and to investiage the variability of these samples.

orig_sample |>
  slice_sample(n = n, replace = TRUE) |>
  summarize(mean_arr_delay = mean(arr_delay))
# A tibble: 1 × 1
  mean_arr_delay
           <dbl>
1           7.10
sf_200_bs <- 1:num_trials |>
  map_dfr(
    ~orig_sample |>
      slice_sample(n = n, replace = TRUE) |>
      summarize(mean_arr_delay = mean(arr_delay))
  ) |>
  mutate(n = n)

sf_200_bs |>
  skim(mean_arr_delay)
Data summary
Name sf_200_bs
Number of rows 500
Number of columns 2
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
mean_arr_delay 0 1 4.7 3.56 -4.66 2.42 4.79 6.97 16.73 ▂▆▇▂▁
sf_200_bs |> ggplot(aes(x = mean_arr_delay)) +
  geom_histogram()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

sf_200_pop <- 1:num_trials |>
  map_dfr(
    ~SF |>
      slice_sample(n = n, replace = TRUE) |>
      summarize(mean_arr_delay = mean(arr_delay))
  ) |>
  mutate(n = n)

sf_200_pop |>
  skim(mean_arr_delay)
Data summary
Name sf_200_pop
Number of rows 500
Number of columns 2
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
mean_arr_delay 0 1 2.36 3.28 -6.82 0.07 2.2 4.62 11.26 ▁▅▇▅▁
sf_200_pop |> ggplot(aes(x = mean_arr_delay)) +
  geom_histogram()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Question: Do the histograms look somewhat similar?

orig_sample |>
  summarize(q98 = quantile(arr_delay, p = 0.98))
# A tibble: 1 × 1
    q98
  <dbl>
1  151.
n <- nrow(orig_sample)
sf_200_bs <- 1:num_trials |>
  map_dfr(
    ~orig_sample |>
      slice_sample(n = n, replace = TRUE) |>
      summarize(q98 = quantile(arr_delay, p = 0.98))
  )

sf_200_bs |>
  skim(q98)
Data summary
Name sf_200_bs
Number of rows 500
Number of columns 1
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
q98 0 1 147.46 46.93 78.06 112.78 151 166 327 ▇▇▁▁▁
n_large <- 10000
sf_10000_bs <- SF |> 
  slice_sample(n = n_large, replace = FALSE)

sf_200_bs <- 1:num_trials |>
  map_dfr(~sf_10000_bs |>
        slice_sample(n = n_large, replace = TRUE) |>
        summarize(q98 = quantile(arr_delay, p = 0.98))
  )

sf_200_bs |>
  skim(q98)
Data summary
Name sf_200_bs
Number of rows 500
Number of columns 1
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
q98 0 1 151.07 4.73 136 149 152 154 166 ▁▂▇▃▁

outliers

SF |>
  filter(arr_delay >= 420) |> 
  select(month, day, dep_delay, arr_delay, carrier)
# A tibble: 7 × 5
  month   day dep_delay arr_delay carrier
  <int> <int>     <dbl>     <dbl> <chr>  
1    12     7       374       422 UA     
2     7     6       589       561 DL     
3     7     7       629       676 VX     
4     7     7       653       632 VX     
5     7    10       453       445 B6     
6     7    10       432       433 VX     
7     9    20      1014      1007 AA     
SF |> 
  filter(arr_delay < 420) |>
  ggplot(aes(arr_delay)) + 
  geom_histogram(binwidth = 15) + 
  labs(x = "Arrival delay (in minutes)")

SF |>
  group_by(hour) |>
  count() |>
  pivot_wider(names_from = hour, values_from = n) |>
  data.frame()
  X5  X6   X7  X8  X9  X10 X11 X12 X13 X14 X15 X16  X17  X18 X19 X20 X21
1 55 663 1696 987 429 1744 413 504 476 528 946 897 1491 1091 731 465  57
SF |>
  ggplot(aes(x = hour, y = arr_delay)) +
  geom_boxplot(alpha = 0.1, aes(group = hour)) +
  geom_smooth(method = "lm") + 
  xlab("Scheduled hour of departure") + 
  ylab("Arrival delay (minutes)") + 
  coord_cartesian(ylim = c(-30, 120)) 
`geom_smooth()` using formula = 'y ~ x'

mod1 <- lm(arr_delay ~ hour, data = SF)
broom::tidy(mod1)
# A tibble: 2 × 5
  term        estimate std.error statistic   p.value
  <chr>          <dbl>     <dbl>     <dbl>     <dbl>
1 (Intercept)   -22.9     1.23       -18.6 2.88e- 76
2 hour            2.01    0.0915      22.0 1.78e-105