Chapter 9 Statistical Foundations

Samples and Populations

The population considered in the book is contained in the nycflights13 dataset. In the nycflights13 dataset contains all of the departing flights from airports in the NYC Area.

library(pacman)

p_load(mdsr, nycflights13, tidyverse, skimr)

Recall the flights dataframe.

flights
# A tibble: 336,776 × 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013     1     1      517            515         2      830            819
 2  2013     1     1      533            529         4      850            830
 3  2013     1     1      542            540         2      923            850
 4  2013     1     1      544            545        -1     1004           1022
 5  2013     1     1      554            600        -6      812            837
 6  2013     1     1      554            558        -4      740            728
 7  2013     1     1      555            600        -5      913            854
 8  2013     1     1      557            600        -3      709            723
 9  2013     1     1      557            600        -3      838            846
10  2013     1     1      558            600        -2      753            745
# ℹ 336,766 more rows
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>

Take a sample of flights from NYC to SF. Get all of the flights to SF and take a sample of 25 of them.

Note that I did not set a seed for the sample, so your answers will differ from what is in the book.

SF <- flights %>% 
  filter(dest == "SFO", !is.na(arr_delay))
SF
# A tibble: 13,173 × 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013     1     1      558            600        -2      923            937
 2  2013     1     1      611            600        11      945            931
 3  2013     1     1      655            700        -5     1037           1045
 4  2013     1     1      729            730        -1     1049           1115
 5  2013     1     1      734            737        -3     1047           1113
 6  2013     1     1      745            745         0     1135           1125
 7  2013     1     1      746            746         0     1119           1129
 8  2013     1     1      803            800         3     1132           1144
 9  2013     1     1      826            817         9     1145           1158
10  2013     1     1     1029           1030        -1     1427           1355
# ℹ 13,163 more rows
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>
sf_25 <- SF %>%
  slice_sample(n = 25)
sf_25
# A tibble: 25 × 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013     7     8      555            559        -4      845            902
 2  2013     7    30     1208           1030        98     1534           1350
 3  2013    11    24     2034           2019        15        1           2355
 4  2013     7    15      821            829        -8     1103           1143
 5  2013     9    15      828            829        -1     1127           1151
 6  2013     6     3     1023           1030        -7     1319           1345
 7  2013     5    27     1403           1400         3     1730           1730
 8  2013     7     8     1710           1659        11     2139           2012
 9  2013     2    13     1632           1630         2     1953           2015
10  2013    10     1     2024           2025        -1     2319           2350
# ℹ 15 more rows
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>

Get the summary statistics for the sample taken.

sf_25 %>%
  skim(arr_delay)
Data summary
Name Piped data
Number of rows 25
Number of columns 19
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
arr_delay 0 1 4.4 37.12 -40 -22 -3 21 104 ▇▆▂▂▂

Since the SF dataset contains all flights from NYC to SF in 2013, the statistics computed from the SF dataset are the calculated population paramaters.

SF %>%
  skim(arr_delay)
Data summary
Name Piped data
Number of rows 13173
Number of columns 19
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
arr_delay 0 1 2.67 47.67 -86 -23 -8 12 1007 ▇▁▁▁▁

Get the 98th percentile of the sample.

sf_25 %>%
  summarize(q98 = quantile(arr_delay, p = 0.98))
# A tibble: 1 × 1
    q98
  <dbl>
1  95.8

Get the estimated proportion of flights to SF with a delay less than 90 minutes.

SF %>%
  group_by(arr_delay < 90) %>%
  count() %>%
  mutate(pct = n / nrow(SF))
# A tibble: 2 × 3
# Groups:   arr_delay < 90 [2]
  `arr_delay < 90`     n    pct
  <lgl>            <int>  <dbl>
1 FALSE              640 0.0486
2 TRUE             12533 0.951 

Compare with the 98th percentile. 90 minutes is the 95th percentile.

SF %>%
  summarize(q98 = quantile(arr_delay, p = 0.98))
# A tibble: 1 × 1
    q98
  <dbl>
1   153

Sample Statistics

The sampling distribution.

Usually sampling is done without replacement.

n <- 25
SF %>%
  slice_sample(n = n) %>%
  summarize(mean_arr_delay = mean(arr_delay))
# A tibble: 1 × 1
  mean_arr_delay
           <dbl>
1           44.3

Note that different random sample produce different values for the sample statistic.

SF %>%
  slice_sample(n = n) %>%
  summarize(mean_arr_delay = mean(arr_delay))
# A tibble: 1 × 1
  mean_arr_delay
           <dbl>
1              2

Using simulation we can approximate the sampling distribution of the sample statistics. Here we are computing the mean, but we could do this for any statistic we are interested in, the median, sample variance, sample standard deviation, etc.

num_trials <- 500
sf_25_means <- 1:num_trials %>%
  map_dfr(
    ~ SF %>%
      slice_sample(n = n) %>%
      summarize(mean_arr_delay = mean(arr_delay))
  ) %>%
  mutate(n = n)

head(sf_25_means)
# A tibble: 6 × 2
  mean_arr_delay     n
           <dbl> <dbl>
1          11       25
2          -2       25
3          13.2     25
4          -8.44    25
5         -12.6     25
6          -5.24    25

Summarize the sample means.

sf_25_means %>%
  skim(mean_arr_delay)
Data summary
Name Piped data
Number of rows 500
Number of columns 2
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
mean_arr_delay 0 1 3.37 9.53 -20.6 -3.77 2.44 9.25 52.2 ▂▇▃▁▁

Confidence intervals

sf_25_means %>%
  summarize(
    x_bar = mean(mean_arr_delay),
    se = sd(mean_arr_delay)
  ) %>%
  mutate(
    ci_lower = x_bar - 2 * se, # approximately 95% of observations 
    ci_upper = x_bar + 2 * se  # are within two standard errors
  ) 
# A tibble: 1 × 4
  x_bar    se ci_lower ci_upper
  <dbl> <dbl>    <dbl>    <dbl>
1  3.37  9.53    -15.7     22.4

Using a larger sample size give a smaller Standard Error.

n <- 100
sf_100_means <- 1:500 %>%
  map_dfr(
    ~ SF %>%
      slice_sample(n = n) %>%
      summarize(mean_arr_delay = mean(arr_delay))
  ) %>%
  mutate(n = n)

Plots to compare the sampling distributions with different sample sizes.

sf_25_means %>%
  bind_rows(sf_100_means) %>%
  ggplot(aes(x = mean_arr_delay)) + 
  geom_histogram(bins = 30) + 
  facet_grid( ~ n) + 
  xlab("Sample mean")

Boostrap

Usually for random sampling we sample without replacement.

three_flights <- SF %>%
  slice_sample(n = 3, replace = FALSE) %>%
  select(year, month, day, dep_time)
three_flights
# A tibble: 3 × 4
   year month   day dep_time
  <int> <int> <int>    <int>
1  2013     2    22      952
2  2013     4    23      748
3  2013     4     8     1102

With the Bootstrap we use sampling with replacement

three_flights %>% slice_sample(n = 3, replace = TRUE)
# A tibble: 3 × 4
   year month   day dep_time
  <int> <int> <int>    <int>
1  2013     4    23      748
2  2013     4    23      748
3  2013     4    23      748
n <- 200
orig_sample <- SF %>% 
  slice_sample(n = n, replace = FALSE)
orig_sample
# A tibble: 200 × 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013     5    31     2100           2059         1     2359             34
 2  2013     1    27     1101           1100         1     1504           1439
 3  2013     7    23     1702           1659         3     2009           2012
 4  2013     5    20      719            735       -16      951           1110
 5  2013     8    15     1153           1029        84     1457           1336
 6  2013     7     9     2250           1855       235      147           2215
 7  2013     5    23     1631           1600        31     2020           1951
 8  2013     4    20      612            612         0      936            935
 9  2013     4    13     2057           1950        67       17           2340
10  2013     3    13     1659           1530        89     2026           1910
# ℹ 190 more rows
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>

The reason for sampling with replacement is that we only have the Original Sample of size \(n\). We do not have the population. So if we sampled with out replacement we would only have one sample to look at. Sampling the Original Sample with replace allow us to general lots of samples and to investiage the variability of these samples.

orig_sample %>%
  slice_sample(n = n, replace = TRUE) %>%
  summarize(mean_arr_delay = mean(arr_delay))
# A tibble: 1 × 1
  mean_arr_delay
           <dbl>
1          -3.54
sf_200_bs <- 1:num_trials %>%
  map_dfr(
    ~orig_sample %>%
      slice_sample(n = n, replace = TRUE) %>%
      summarize(mean_arr_delay = mean(arr_delay))
  ) %>%
  mutate(n = n)

sf_200_bs %>%
  skim(mean_arr_delay)
Data summary
Name Piped data
Number of rows 500
Number of columns 2
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
mean_arr_delay 0 1 -2.21 3.42 -11.76 -4.5 -2.17 0.2 8.04 ▁▅▇▅▁
sf_200_bs %>% ggplot(aes(x = mean_arr_delay)) +
  geom_histogram()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

sf_200_pop <- 1:num_trials %>%
  map_dfr(
    ~SF %>%
      slice_sample(n = n, replace = TRUE) %>%
      summarize(mean_arr_delay = mean(arr_delay))
  ) %>%
  mutate(n = n)

sf_200_pop %>%
  skim(mean_arr_delay)
Data summary
Name Piped data
Number of rows 500
Number of columns 2
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
mean_arr_delay 0 1 2.44 2.98 -5.18 0.52 2.33 4.19 12.57 ▂▇▇▃▁
sf_200_pop %>% ggplot(aes(x = mean_arr_delay)) +
  geom_histogram()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Question: Do the histograms look somewhat similar?

orig_sample %>%
  summarize(q98 = quantile(arr_delay, p = 0.98))
# A tibble: 1 × 1
    q98
  <dbl>
1  135.
n <- nrow(orig_sample)
sf_200_bs <- 1:num_trials %>%
  map_dfr(
    ~orig_sample %>%
      slice_sample(n = n, replace = TRUE) %>%
      summarize(q98 = quantile(arr_delay, p = 0.98))
  )

sf_200_bs %>%
  skim(q98)
Data summary
Name Piped data
Number of rows 500
Number of columns 1
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
q98 0 1 159.85 75.62 41.04 82.04 134.58 212.78 347 ▇▇▅▃▂
n_large <- 10000
sf_10000_bs <- SF %>% 
  slice_sample(n = n_large, replace = FALSE)

sf_200_bs <- 1:num_trials %>%
  map_dfr(~sf_10000_bs %>%
        slice_sample(n = n_large, replace = TRUE) %>%
        summarize(q98 = quantile(arr_delay, p = 0.98))
  )

sf_200_bs %>%
  skim(q98)
Data summary
Name Piped data
Number of rows 500
Number of columns 1
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
q98 0 1 151.77 6.07 133 148.04 152 155.01 167 ▁▂▇▅▂

outliers

SF %>%
  filter(arr_delay >= 420) %>% 
  select(month, day, dep_delay, arr_delay, carrier)
# A tibble: 7 × 5
  month   day dep_delay arr_delay carrier
  <int> <int>     <dbl>     <dbl> <chr>  
1    12     7       374       422 UA     
2     7     6       589       561 DL     
3     7     7       629       676 VX     
4     7     7       653       632 VX     
5     7    10       453       445 B6     
6     7    10       432       433 VX     
7     9    20      1014      1007 AA     
SF %>% 
  filter(arr_delay < 420) %>%
  ggplot(aes(arr_delay)) + 
  geom_histogram(binwidth = 15) + 
  labs(x = "Arrival delay (in minutes)")

SF %>%
  group_by(hour) %>%
  count() %>%
  pivot_wider(names_from = hour, values_from = n) %>%
  data.frame()
  X5  X6   X7  X8  X9  X10 X11 X12 X13 X14 X15 X16  X17  X18 X19 X20 X21
1 55 663 1696 987 429 1744 413 504 476 528 946 897 1491 1091 731 465  57
SF %>%
  ggplot(aes(x = hour, y = arr_delay)) +
  geom_boxplot(alpha = 0.1, aes(group = hour)) +
  geom_smooth(method = "lm") + 
  xlab("Scheduled hour of departure") + 
  ylab("Arrival delay (minutes)") + 
  coord_cartesian(ylim = c(-30, 120)) 
`geom_smooth()` using formula = 'y ~ x'

mod1 <- lm(arr_delay ~ hour, data = SF)
broom::tidy(mod1)
# A tibble: 2 × 5
  term        estimate std.error statistic   p.value
  <chr>          <dbl>     <dbl>     <dbl>     <dbl>
1 (Intercept)   -22.9     1.23       -18.6 2.88e- 76
2 hour            2.01    0.0915      22.0 1.78e-105