Chapter 1:

Observations

Distance	Time
4.9 m	1 s
19.6 m	2 s
44.1 m	3 s
78.5 m	4 s

$$
g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

features					
\bigcirc					1
year	model	price	mileage	color	transmission
2011	SEL	21992	7413	Yellow	AUTO
2011	SEL	20995	10926	Gray	AUTO
2011	SEL	19995	7351	Silver	AUTO
2011	SEL	17809	11613	Gray	AUTO
2012	SE	17500	8367	White	MANUAL
2010	SEL	17495	25125	Silver	AUTO
2011	SEL	17000	27393	Blue	AUTO
2010	SEL	16995	21026	Silver	AUTO
2011	SES	16995	32655	Silver	AUTO

Chapter 2:

Histogram of Used Car Prices

Histogram of Used Car Mileage

Right Skew

No Skew

Left Skew

Uniform Distribution

$\operatorname{Var}(\mathrm{X})=\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$

$\operatorname{StdDev}(\mathrm{X})=\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}$

Unimodal Distribution

Bimodal Distribution

Scatterplot of Price vs. Mileage

Cell Contents

Total Observations in Table: 150

Chapter 3:

how sweet the food tastes

how sweet the food tastes
$\operatorname{dist}(p, q)=\sqrt{\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}+\ldots+\left(p_{n}-q_{n}\right)^{2}}$
$\operatorname{dist}($ tomato, green bean $)=\sqrt{(6-3)^{2}+(4-7)^{2}}=4.2$

> Larger k
> Smaller k
> $\mathrm{X}_{\text {new }}=\frac{\mathrm{X}-\min (\mathrm{X})}{\max (\mathrm{X})-\min (\mathrm{X})}$
> $\mathrm{X}_{\text {new }}=\frac{\mathrm{X}-\mu}{\sigma}=\frac{\mathrm{X}-\operatorname{Mean}(\mathrm{X})}{\mathrm{StdDev}(\mathrm{X})}$
> male $= \begin{cases}1 & \text { if } x=\text { male } \\ 0 & \text { otherwise }\end{cases}$

hot $= \begin{cases}1 & \text { if } x=\text { hot } \\ 0 & \text { otherwise }\end{cases}$

medium $=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$ if $\mathrm{x}=$ medium otherwise

kNN classification syntax

using the knn () function in the class package

Building the classifier and making predictions:

$\mathrm{p}<-\mathrm{knn}($ train, test, class, k)

- train is a data frame containing numeric training data
- test is a data frame containing numeric test data
- class is a factor vector with the class for each row in the training data
- \mathbf{k} is an integer indicating the number of nearest neighbors

The function returns a factor vector of predicted classes for each row in the test data frame.

Example:

```
wbcd_pred <- knn(train = wbcd_train, test = wbcd_test,
    c1 = wbcd_train_1abels, k = 3)
```


Chapter 4:

all email

ham
(80\%)

	Viagra		Total		Viagra		
Frequency	Yes	No		Likelihood	Yes	No	Total
spam	4	16	20	spam	4 / 20	16 / 20	20
ham	1	79	80	ham	$1 / 80$	$79 / 80$	80
Total	5	95	100	Total	$5 / 100$	$95 / 100$	100

	Viagra (W_{1})		Money (W_{2})		Groceries (W_{3})		Unsubscribe (W_{4})		
Likelihood	Yes	No	Yes	No	Yes	No	Yes	No	Total
spam	4 / 20	16 / 20	10 / 20	$10 / 20$	0/20	20/20	12 / 20	$8 / 20$	20
ham	$1 / 80$	79 / 80	14 / 80	66 / 80	$8 / 80$	71/80	$23 / 80$	$57 / 80$	80
Total	5/100	95/100	24/100	76/100	8/100	91/100	35/100	$65 / 100$	100

$P\left(\right.$ spam $\left.\mid W_{1} \cap \neg W_{2} \cap \neg W_{3} \cap W_{4}\right)=\frac{P\left(W_{1} \cap \neg W_{2} \cap \neg W_{3} \cap W_{4} \mid \text { spam }\right) P(\text { spam })}{P\left(W_{1} \cap \neg W_{2} \cap \neg W_{3} \cap W_{4}\right)}$
$P\left(\right.$ spam $\left.\mid W_{1} \cap \neg W_{2} \cap \neg W_{3} \cap W_{4}\right) \propto P\left(W_{1} \mid\right.$ spam $) P\left(\neg W_{2} \mid\right.$ spam $) P\left(\neg W_{3} \mid\right.$ spam $) P\left(W_{4} \mid\right.$ spam $) P($ spam $)$
$P\left(\right.$ ham $\left.\mid W_{1} \cap \neg W_{2} \cap \neg W_{3} \cap W_{4}\right) \propto P\left(W_{1} \mid\right.$ ham $) P\left(\neg W_{2} \mid\right.$ ham $) P\left(\neg W_{3} \mid\right.$ ham $) P\left(W_{4} \mid\right.$ ham $) P($ ham $)$

$$
P\left(C_{L} \mid F_{1}, \ldots, F_{n}\right)=\frac{1}{Z} p\left(C_{L}\right) \prod_{i=1}^{n} p\left(F_{i} \mid C_{L}\right)
$$

message \#	balloon	balls	bam	bambling	band
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

 finish win pIs ask stop tell mobil even always care work $\underset{\rightarrow}{\boldsymbol{x}}$ lo one need hope really ${ }_{6}^{\circ}$ place hey still $\underset{+}{(1)}$ like KnOW miss min year take + went

 soon prize $\underset{=}{\leq}$ JUSt free for say sort help meet $\xlongequal{\leftrightarrows}$ claim wish hello end
money great $\stackrel{\oplus}{\otimes}$ gOOd tut ont $\begin{gathered}\text { said } \\ \text { the late } \\ \text { later find gonna }\end{gathered}$ nice hap dun lo

Naive Bayes classification syntax

using the naiveBayes () function in the e1071 package

Building the classifier:

```
m <- naiveBayes(train, class, laplace = 0)
```

- train is a data frame or matrix containing training data
- c1 ass is a factor vector with the class for each row in the training data
- 1 ap 1 ace is a number to control the Laplace estimator (by default, 0)

The function will return a naive Bayes model object that can be used to make predictions.

Making predictions:

```
p <- predict(m, test, type = "class")
```

- m is a model trained by the naiveBayes () function
- test is a data frame or matrix containing test data with the same features as the training data used to build the classifier
- type is either "class" or "raw" and specifies whether the predictions should be the most likely class value or the raw predicted probabilities

The function will return a vector of predicted class values or raw predicted probabilities depending upon the value of the type parameter.

Example:

```
sms_classifier <- naiveBayes(sms_train, sms_type)
sms_predictions <- predict(sms_classifier, sms_test)
```

Total Observations in Table: 1390

Total Observations in Table: 1390

Chapter 5:

$\operatorname{InfoGain}(F)=\operatorname{Entropy}\left(S_{1}\right)-\operatorname{Entropy}\left(S_{2}\right)$
$\operatorname{Entropy}(S)=\sum_{i=1}^{n} w_{i} \operatorname{Entropy}\left(P_{i}\right)$

C5.0 decision tree syntax

using the C5.0 () function in the C50 package

Building the classifier:

$m<-C 5.0(t r a i n, ~ c l a s s, ~ t r i a l s=1, ~ c o s t s=N U L L)$

- train is a data frame containing training data
- class is a factor vector with the class for each row in the training data
- trials is an optional number to control the number of boosting iterations (set to 1 by default)
- costs is an optional matrix specifying costs associated with various types of errors

The function will return a C5.0 model object that can be used to make predictions.

Making predictions:

$p<-$ predict(m, test, type = "class")

- m is a model trained by the C5.0() function
- test is a data frame containing test data with the same features as the training data used to build the classifier.
- type is either "c1ass" or "prob" and specifies whether the predictions should be the most probable class value or the raw predicted probabilities

The function will return a vector of predicted class values or raw predicted probabilities depending upon the value of the type parameter.

Example:

credit_mode1 <- C5.O(credit_train, 1oan_default)
credit_prediction <- predict(credit_mode1, credit_test)

```
C5.0 [Release 2.07 GPL Edition]
```

Class specified by attribute `outcome'
Read 900 cases (17 attributes) from undefined.data Decision tree:
checking_balance in \{> 200 DM, unknown\}: no (412/50) checking_balance in \{< 0 DM,1 - 200 DM\}:
:...credit_history in \{perfect, very good\}: yes (59/18) credit_history in \{critical,good, poor\}:
:...months_loan_duration <= 22:
:...credit_history = critical: no (72/14)
: credit_history = poor:
: :...dependents > 1: no (5)
: : dependents <= 1:
: : :...years_at_residence <= 3: yes (4/1)
: : years_at_residence > 3: no (5/1)

Animal	Travels By	Has Fur	Mammal
Bats	Air	Yes	Yes
Bears	Land	Yes	Yes
Birds	Air	No	No
Cats	Land	Yes	Yes
Dogs	Land	Yes	Yes
Eels	Sea	No	No
Elephants	Land	No	Yes
Fish	Sea	No	No
Frogs	Land	No	No
Insects	Air	No	No
Pigs	Land	No	Yes
Rabbits	Land	Yes	Yes
Rats	Land	Yes	Yes
Rhinos	Land	No	Yes
Sharks	Sea	No	No

Full Dataset

Travels By	Predicted	Mammal
Air	No	Yes
Air	No	No
Air	No	No
Land	Yes	Yes
Land	Yes	No
Land	Yes	Yes
Sea	No	No
Sea	No	No
Sea	No	No

Rule for "Travels By"
Error Rate = 2 / 15

Has Fur	Predicted	Mammal
No	No	No
No	No	No
No	No	Yes
No	No	No
No	No	No
No	No	No
No	No	Yes
No	No	Yes
No	No	No
Yes	Yes	Yes

Rule for "Has Fur"
Error Rate = 3 / 15

1 R classification rule syntax

using the OneR () function in the RWeka package

Building the classifier:

```
m <- OneR(class ~ predictors, data = mydata)
```

- c1ass is the column in the mydata data frame to be predicted
- predictors is an R formula specifying the features in the mydata data frame to use for prediction
- data is the data frame in which class and predictors can be found

The function will return a 1R model object that can be used to make predictions.

Making predictions:

p <- predict(m, test)

- m is a model trained by the OneR() function
- test is a data frame containing test data with the same features as the training data used to build the classifier.

The function will return a vector of predicted class values.

Example:

$$
\begin{array}{r}
\text { mushroom_classifier <- OneR(type } \left.\sim \begin{array}{r}
\sim \text { odor + cap_color, } \\
\text { data }
\end{array}=\text { mushroom_train }\right) \\
\text { mushroom_prediction }<- \text { predict(mushroom_classifier }, \\
\text { mushroom_test })
\end{array}
$$

RIPPER classification rule syntax

using the JRip() function in the RWeka package

Building the classifier:

```
m <- JRip(class ~ predictors, data = mydata)
```

- c1ass is the column in the mydata data frame to be predicted
- predictors is an R formula specifying the features in the mydata data frame to use for prediction
- data is the data frame in which class and predictors can be found

The function will return a RIPPER model object that can be used to make predictions.

Making predictions:

p <- predict(m, test)

- m is a model trained by the JRip() function
- test is a data frame containing test data with the same features as the training data used to build the classifier.

The function will return a vector of predicted class values.

Example:

$$
\begin{array}{r}
\text { mushroom_classifier }<- \text { JRip(type } \sim \text { odor }+ \text { cap_color, } \\
\text { data }=\text { mushroom_train) } \\
\text { mushroom_prediction }<- \text { predict(mushroom_classifier, } \\
\text { mushroom_test) }
\end{array}
$$

Chapter 6:

$$
\begin{aligned}
& \sum\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum e_{i}^{2} \\
& a=\bar{y}-b \bar{x}
\end{aligned}
$$

$b=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
$\operatorname{Var}(x)=\underline{\sum\left(x_{i}-\bar{x}\right)^{2}}$
n
$\operatorname{Cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n}$

$$
\begin{aligned}
& \rho_{x, y}=\operatorname{Corr}(x, y)=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}} \\
& y=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{i} x_{i}+\varepsilon \\
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{i} x_{i}+\varepsilon \\
& y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{i} x_{i}+\varepsilon
\end{aligned}
$$

regression coefficients
$\begin{array}{llll}\boldsymbol{\beta}_{0} & \boldsymbol{\beta}_{1} & \boldsymbol{\beta}_{2} & \boldsymbol{\beta}_{3}\end{array}$

$\mathbf{Y}=\boldsymbol{\beta} \mathbf{X}+\varepsilon$
 $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\mathbf{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathbf{T}} \mathbf{Y}$

Histogram of insurance\$expenses

| ∞ | $\circ \circ \circ \circ$ | $000 \infty \circ$ | \circ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \circ | $\circ \infty \circ \circ \infty \infty \infty$ | $\infty \infty \infty$ | ∞ | \circ | |

$000000000000000000000000000000 \infty 00000$

0000000000000000000000000000000000

expenses

Multiple regression modeling syntax

using the 7 m () function in the stats package

Building the model:

$\mathrm{m}<-1 \mathrm{~m}(\mathrm{dv} \sim \mathrm{iv}$, data = mydata)

- $d v$ is the dependent variable in the mydata data frame to be modeled
- $\quad i v$ is an R formula specifying the independent variables in the mydata data frame to use in the model
- data specifies the data frame in which the $d v$ and $i v$ variables can be found

The function will return a regression model object that can be used to make predictions. Interactions between independent variables can be specified using the * operator.

Making predictions:

$\mathrm{p}<-\mathrm{predict}(\mathrm{m}$, test)

- m is a model trained by the 1 m () function
- test is a data frame containing test data with the same features as the training data used to build the model.

The function will return a vector of predicted values.

Example:

```
ins_mode1 <- 1m(charges ~ age + sex + smoker,
    data = insurance)
ins_pred <- predict(ins_model, insurance_test)
```

Call:
lm (formula $=$ expenses \sim., data $=$ insurance)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-11302.7	-2850.9	-979.6	1383.9	29981.7

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -11941.6 987.8-12.089 < 2e-16
age
sexmale 256.8
11.9 21.586 < 2e-16

2
bmi
children
smokeryes
-131.3
$332.9-0.3950 .693255$
regionnorthwest
339.3
$28.611 .864<2 \mathrm{e}-16$
$475.7 \quad 137.8 \quad 3.452 \quad 0.000574$
23847.5
413.157 .723 < 2e-16 ***
regionsoutheast -1035.6 478.7 -2.163 0.030685 *
regionsouthwest -959.3 477.9-2.007 0.044921 *
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' ' 1

Residual standard error: 6062 on 1329 degrees of freedom Multiple R-squared: 0.7509, Adjusted R-squared: 0.7494 F-statistic: 500.9 on 8 and 1329 DF, p-value: < 2.2e-16

$$
y=\alpha+\beta_{1} x
$$

Call:
lm (formula $=$ expenses \sim age + age $2+$ children $+b m i+s e x+b m i 30 *$ smoker + region, data = insurance)

Residuals:

Min	$1 Q$	Median	3Q	Max
-17297.1	-1656.0	-1262.7	-727.8	24161.6

Coefficients:

	Estimate	Std. Error	value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	139.0053	1363.1359	0.102	0.918792	
age	-32.6181	59.8250	-0.545	0.585690	
age2	3.7307	0.7463	4.999	6.54e-07	
children	678.6017	105.8855	6.409	2.03e-10	
bmi	119.7715	34.2796	3.494	0.000492	
sexmale	-496.7690	244.3713	-2.033	0.042267	
bmi30	-997.9355	422.9607	-2.359	0.018449	
smokeryes	13404.5952	439.9591	30.468	< 2e-16	
regionnorthwest	-279.1661	349.2826	-0.799	0.424285	
regionsoutheast	-828.0345	351.6484	-2.355	0.018682	
regionsouthwest	-1222.1619	350.5314	-3.487	0.000505	
bmi30:smokeryes	19810.1534	604.6769	32.762	< 2e-16	

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' ’ 1
Residual standard error: 4445 on 1326 degrees of freedom
Multiple R-squared: 0.8664, Adjusted R-squared: 0.8653
F-statistic: 781.7 on 11 and 1326 DF, p-value: < $2.2 \mathrm{e}-16$

original data	1	1	1	2	2	3	4	5	5	6	6	7	7	7	7
split on feature A	1	1	1	2	2	3	4	5	5	6	6	7	7	7	7
split on feature B	1	1	1	2	2	3	4	5	5	6	6	7	7	7	7

Histogram of wine\$quality

Regression trees syntax

using the rpart () function in the rpart package

Building the model:

```
m <- rpart(dv ~ iv, data = mydata)
```

- $d v$ is the dependent variable in the mydata data frame to be modeled
- $\quad i v$ is an R formula specifying the independent variables in the mydata data frame to use in the model
- data specifies the data frame in which the $d v$ and $i v$ variables can be found

The function will return a regression tree model object that can be used to make predictions.

Making predictions:

```
p <- predict(m, test, type = "vector")
```

- m is a model trained by the rpart () function
- test is a data frame containing test data with the same features as the training data used to build the model
- type specifies the type of prediction to return, either "vector" (for predicted numeric values), "class" for predicted classes, or "prob" (for predicted class probabilities)

The function will return a vector of predictions depending on the type parameter.

Example:

```
wine_mode1 <- rpart(quality ~ alcohol + sulfates,
    data = wine_train)
wine_predictions <- predict(wine_mode1, wine_test)
```


$\mathrm{MAE}=\frac{1}{n}$ $\sum_{i=1}^{n}\left|e_{i}\right|$

Model trees syntax

using the M5 P () function in the RWeka package

Building the model:

$m<-$ M5P(dv ~ iv, data = mydata)

- $d v$ is the dependent variable in the mydata data frame to be modeled
- $\quad i v$ is an R formula specifying the independent variables in the mydata data frame to use in the model
- data specifies the data frame in which the $d v$ and $i v$ variables can be found

The function will return a model tree object that can be used to make predictions.

Making predictions:

$\mathrm{p}<-\mathrm{predict}(m$, test)

- m is a model trained by the M5P() function
- test is a data frame containing test data with the same features as the training data used to build the model

The function will return a vector of predicted numeric values.

Example:

```
wine_mode1 <- M5P(quality ~ alcohol + sulfates,
    data = wine_train)
wine_predictions <- predict(wine_mode1, wine_test)
```


Chapter 7:

$y(x)=f$

1.00-

$$
f(x)=\left\{\begin{array}{l}
0 \text { if } x<0 \\
1 \text { if } x \geq 0
\end{array}\right.
$$

Output Signal

Hyperbolic Tangent

Input Nodes

Neural network syntax

using the neuralnet () function in the neuralnet package

Building the model:

m <- neuralnet (target ~ predictors, data = mydata, hidden = 1)

- target is the outcome in the mydata data frame to be modeled
- predictors is an R formula specifying the features in the mydata data frame to use for prediction
- data specifies the data frame in which the target and predictors variables can be found
- $\quad h i d d e n$ specifies the number of neurons in the hidden layer (by default, 1)

The function will return a neural network object that can be used to make predictions.

Making predictions:

$\mathrm{p}<-\operatorname{compute}(m$, test)

- m is a model trained by the neuralnet () function
- test is a data frame containing test data with the same features as the training data used to build the classifier

The function will return a list with two components: \$ neurons, which stores the neurons for each layer in the network, and \$net. result, which stores the model's predicted values.

Example:

```
concrete_mode1 <- neuralnet(strength ~ cement + slag
    + ash, data = concrete)
mode1_results <- compute(concrete_mode1,
    concrete_data)
strength_predictions <- mode1_results$net.resu1t
```


Error: 5.077438 Steps: 4882

Error: 1.626684 Steps: 86849

Two Dimensions

Three Dimensions

$\vec{w} \cdot \vec{x}+b=0$
$\vec{w} \cdot \vec{x}+b \geq+1$
$\vec{w} \cdot \vec{x}+b \leq-1$

$\min \frac{1}{2}\|\vec{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}$
s.t. $y_{i}\left(\vec{w} \cdot \vec{x}_{i}-b\right) \geq 1-\xi_{i}, \forall \vec{x}_{i}, \xi_{i} \geq 0$

$$
\begin{aligned}
& \mathrm{K}\left(\overrightarrow{x_{i}}, \overrightarrow{x_{j}}\right)=\phi\left(\overrightarrow{x_{i}}\right) \cdot \phi\left(\overrightarrow{x_{j}}\right) \\
& K\left(\overrightarrow{x_{i}}, \overrightarrow{x_{j}}\right)=\overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}} \\
& \mathrm{~K}\left(\overrightarrow{x_{i}}, \overrightarrow{x_{j}}\right)=\left(\overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}+1\right)^{d} \\
& \mathrm{~K}\left(\overrightarrow{x_{i}}, \overrightarrow{x_{j}}\right)=\tanh \left(\kappa \overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}-\delta\right) \\
& K\left(\vec{x}_{i}, \vec{x}_{j}\right)=e^{2 \sigma^{2}}
\end{aligned}
$$

Support vector machine syntax

using the ksvm () function in the kern 1 ab package

Building the model:

m <- ksvm(target ~ predictors, data = mydata,

$$
\text { kerne1 = "rbfdot", } c=1)
$$

- target is the outcome in the mydata data frame to be modeled
- predictors is an R formula specifying the features in the mydata data frame to use for prediction
- data specifies the data frame in which the target and predictors variables can be found
- kerne1 specifies a nonlinear mapping such as "rbfdot" (radial basis), "polydot" (polynomial), "tanhdot" (hyperbolic tangent sigmoid), or "vanilladot" (linear)
- C is a number that specifies the cost of violating the constraints, i.e., how big of a penalty there is for the "soft margin." Larger values will result in narrower margins
The function will return a SVM object that can be used to make predictions.

Making predictions:

$\mathrm{p}<-\mathrm{predict}(m$, test, type = "response")

- m is a model trained by the $k s v m()$ function
- test is a data frame containing test data with the same features as the training data used to build the classifier
- type specifies whether the predictions should be "response" (the predicted class) or "probabilities" (the predicted probability, one column per class level).

The function will return a vector (or matrix) of predicted classes (or probabilities) depending on the value of the type parameter.

Example:

```
1etter_classifier <- ksvm(1etter ~ ., data =
    letters_train, kerne1 = "vanilladot")
letter_prediction <- predict(letter_classifier,
    1etters_test)
```


Multiple Output Nodes

Multiple Hidden Layers

true minimum

Chapter 8:

$\{$ bread, peanut butter, jelly $\}$
$\{$ peanut butter, jelly $\} \rightarrow\{$ bread $\}$

$\operatorname{support}(X)=\frac{\operatorname{count}(X)}{N}$

confidence $(X \rightarrow Y)=\frac{\operatorname{support}(X, Y)}{\operatorname{support}(X)}$

	V1	V2	V3	V4
$\mathbf{1}$	citrus fruit	semi-finished bread	margarine	ready soups
$\mathbf{2}$	tropical fruit	yogurt	coffee	
$\mathbf{3}$	whole milk			
$\mathbf{4}$	pip fruit	yogurt	cream cheese	meat spreads
$\mathbf{5}$	other vegetables	whole milk	condensed milk	long life bakery product

Association rule syntax

using the apriori() function in the arules package

Finding association rules:

```
    myrules <- apriori(data = mydata, parameter =
```

 list(support \(=0.1\), confidence \(=0.8\), minlen \(=1\)))
 - data is a sparse item matrix holding transactional data
- support specifies the minimum required rule support
- confidence specifies the minimum required rule confidence
- min1en specifies the minimum required rule items

The function will return a rules object storing all rules that meet the minimum criteria.

Examining association rules:

inspect(myrules)

- myrules is a set of association rules from the apriori() function

This will output the association rules to the screen. Vector operators can be used on myrules to choose a specific rule or rules to view.

Example:

```
groceryrules <- apriori(groceries, parameter =
    1ist(support = 0.01, confidence = 0.25, min1en = 2))
inspect(groceryrules[1:3])
```


$\operatorname{lift}(X \rightarrow Y)=$ confidence $(X \rightarrow Y)$ support (Y)

Chapter 9:

Math and Statistics Publications

$$
\operatorname{dist}(x, y)=\sqrt{\sum_{i=1}\left(x_{i}-y_{i}\right)^{2}}
$$

n

Within-Group Heterogeneity

Clustering syntax

using the kmeans () function in the stats package

Finding clusters:

myclusters <- kmeans(mydata, k)

- mydata is a matrix or data frame with the examples to be clustered
- \mathbf{k} specifies the desired number of clusters

The function will return a cluster object that stores information about the clusters.

Examining clusters:

- myc1usters\$c1uster is a vector of cluster assignments from the kmeans () function
- myclusters\$centers is a matrix indicating the mean values for each feature and cluster combination
- myclusters\$size lists the number of examples assigned to each cluster

Example:

```
teen_clusters <- kmeans(teens, 5)
teens$cluster_id <- teen_clusters$cluster
```

	basketball	football	soccer	softball	volleyball	swimming
1	0.16001227	0.2364174	0.10385512	0.07232021	0.18897158	0.23970234
2	-0.09195886	0.0652625 -	-0.09932124 -	-0.01739428 -	-0.06219308	0.03339844
3	0.52755083	0.4873480	0.29778605	0.37178877	0.37986175	0.29628671
4	0.34081039	0.3593965	0.12722250	0.16384661	0.11032200	0.26943332
5	-0.16695523	-0.1641499 -	-0.09033520 -	-0.11367669 -	-0.11682181 -0	0.10595448
	cheerleading	baseball	1 tennis	s sports	s cute	x
1	0.3931445	0.02993479	90.13532387	$7 \quad 0.10257837$	70.37884271	0.020042068
2	-0.1101103	-0.11487510	00.04062204	-0.09899231	$1-0.03265037$	-0.042486141
3	0.3303485	0.35231971	10.14057808	80.32967130	0.54442929	0.002913623
4	0.1856664	0.27527088	80.10980958	80.79711920	0.47866008	2.028471066
	-0.1136077	-0.10918483	$3-0.05097057$	$7-0.13135334$	-0.18878627	-0.097928345

| | sexy | hot | kissed | dance | band | marching | music |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.11740551 | 0.41389104 | 0.06787768 | 0.22780899 | -0.10257102 | -0.10942590 | 0.1378306 |
| 2 | -0.04329091 | -0.03812345 | -0.04554933 | 0.04573186 | 4.06726666 | 5.25757242 | 0.4981238 |
| 3 | 0.24040196 | 0.38551819 | -0.03356121 | 0.45662534 | -0.02120728 | -0.10880541 | 0.2844999 |
| 4 | 0.51266080 | 0.31708549 | 2.97973077 | 0.45535061 | 0.38053621 | -0.02014608 | 1.1367885 |
| 5 | -0.09501817 | -0.13810894 | -0.13535855 | -0.15932739 | -0.12167214 | -0.11098063 | -0.1532006 |

Cluster 1 $(N=3,376)$	Cluster 2 $(N=601)$	Cluster 3 $(N=1,036)$	Cluster 4 $(N=3,279)$	Cluster 5 $(N=21,708)$
swimming cheerleading cute sexy hot dance dress hair mall hollister abercrombie shopping clothes	band marching music rock	sports sex sexy hot kissed dance music band die death drunk drugs	basketball football soccer softball volleyball baseball sports god church Jesus bible	???
Princesses	Brains	Criminals	Athletes	Basket Cases

Chapter 10:

Three Classes
Predicted Class

Predicted to be Spam yes	
yctually Spam yes	

$$
\begin{aligned}
& \text { accuracy }=\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN}} \\
& \text { error rate }=\frac{\mathrm{FP}+\mathrm{FN}}{\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN}}=1-\text { accuracy }
\end{aligned}
$$

Cell Contents

Total Observations in Table: 1390

Confusion Matrix and Statistics

Reference		
Prediction	ham	spam
ham	1203	31
spam	4	152

Accuracy : 0.9748
95\% CI : (0.9652, 0.9824)
No Information Rate : 0.8683 P-Value [Acc > NIR] : < 2.2e-16
$\begin{aligned} & \text { Kappa }: 0.8825 \\ & \text { Mcnemar's Test P-Value }: 1.109 e-05\end{aligned}$

Sensitivity : 0.8306
Specificity : 0.9967
Pos Pred Value : 0.9744
Neg Pred Value : 0.9749
Prevalence : 0.1317
Detection Rate : 0.1094
Detection Prevalence : 0.1122
Balanced Accuracy : 0.9136
'Positive' Class : spam
$\kappa=\frac{\operatorname{Pr}(a)-\operatorname{Pr}(e)}{1-\operatorname{Pr}(e)}$

TP

sensitivity $=$

 specificity $=$

$$
\begin{aligned}
& \text { precision }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}} \\
& \text { recall }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} \\
&
\end{aligned}
$$

error $=0.632 \times$ error $_{\text {test }}+0.368 \times$ error $_{\text {train }}$

Chapter 11:

1000 samples
16 predictor
2 classes: 'no', 'yes'
2 No pre-processing
2 Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 1000, 1000, 1000, 1000, 1000, 1000, ...

3 Resampling results across tuning parameters:

model	winnow	trials	Accuracy	Kappa	Accuracy SD	Kappa SD
rules	FALSE	1	0.6847204	0.2578421	0.02558775	0.05622302
rules	FALSE	10	0.7112829	0.3094601	0.02087257	0.04585890
rules	FALSE	20	0.7221976	0.3260145	0.01977334	0.04512083
rules	TRUE	1	0.6888432	0.2549192	0.02683844	0.05695277
rules	TRUE	10	0.7113716	0.3038075	0.01947701	0.04484956
rules	TRUE	20	0.7233222	0.3266866	0.01843672	0.03714053
tree	FALSE	1	0.6769653	0.2285102	0.03027647	0.07001131
tree	FALSE	10	0.7222552	0.2880662	0.02061900	0.05601918
tree	FALSE	20	0.7297858	0.3067404	0.02007556	0.05616826
tree	TRUE	1	0.6771020	0.2219533	0.02703456	0.05955907
tree	TRUE	10	0.7173312	0.2777136	0.01700633	0.04358591
tree	TRUE	20	0.7285714	0.3058474	0.01497973	0.04145128

4
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were trials $=20$, model $=$ tree and winnow $=$ FALSE.

1000 samples
16 predictor
2 classes: 'no', 'yes'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 900, 900, 900, 900, 900, 900, ...
Resampling results across tuning parameters:

trials	Accuracy	Kappa	Accuracy SD	Kappa SD
1	0.724	0.3124461	0.02547330	0.05897140
5	0.713	0.2921760	0.02110819	0.06018851
10	0.719	0.2947271	0.03107339	0.06719720
15	0.721	0.3009258	0.01969207	0.05105480
20	0.717	0.2929875	0.02790858	0.07912362
25	0.728	0.3150336	0.03224903	0.09367152
30	0.729	0.3104144	0.02766867	0.08069045
35	0.741	0.3389908	0.03142893	0.09352673

Tuning parameter 'model' was held constant at a value of tree Tuning parameter 'winnow' was held constant at a value of FALSE Kappa was used to select the optimal model using the one SE rule. The final values used for the model were trials $=1$, model $=$ tree and winnow = FALSE.

Random forest syntax

using the randomForest() function in the randomForest package

Building the classifier:

m <- randomForest(train, class, ntree $=500$, mtry $=\operatorname{sqrt}(p)$)

- train is a data frame containing training data
- c1 ass is a factor vector with the class for each row in the training data
- ntree is an integer specifying the number of trees to grow
- mtry is an optional integer specifying the number of features to randomly select at each split (uses sqrt(p) by default, where p is the number of features in the data)

The function will return a random forest object that can be used to make predictions.

Making predictions:

```
p <- predict(m, test, type = "response")
```

- m is a model trained by the randomForest() function
- test is a data frame containing test data with the same features as the training data used to build the classifier
- type is either "response", "prob", or "votes" and is used to indicate whether the predictions vector should contain the predicted class, the predicted probabilities, or a matrix of vote counts, respectively.

The function will return predictions according to the value of the type parameter.

Example:

credit_mode1 <- randomForest(credit_train, loan_default)
credit_prediction <- predict(credit_mode1, credit_test)

Chapter 12:

Source: local data frame [1,000 x 17]

checking_balance	months_loan_duration	credit_history	purpose	amount
< 0 DM	6	critical	furniture/appliances	1169
1-200 DM	48	good	furniture/appliances	5951
unknown	12	critical	education	2096
< 0 DM	42	good	furniture/appliances	7882
$<0 \mathrm{DM}$	24	poor	car	4870
unknown	36	good	education	9055
unknown	24	good	furniture/appliances	2835
1-200 DM	36	good	car	6948
unknown	12	good	furniture/appliances	3059
1-200 DM	30	critical	car	5234
...	\ldots	

Variables not shown: savings_balance (fctr), employment_duration (fctr), percent_of_income (int), years_at_residence (int), age (int), other_credit (fctr), housing (fctr), existing_loans_count (int), job (fctr), dependents (int), phone (fctr), default (fctr)

Serial computing:

Parallel computing:

CPU with 16 cores

GPU with 1000+ cores

