library(mdsr)
library(sp)
plot(CholeraDeaths)

It is probably best to do this in an R Project.

library(rgdal)
download.file("http://rtwilson.com/downloads/SnowGIS_SHP.zip",
              dest="SnowGIS.zip", mode="wb")
trying URL 'http://rtwilson.com/downloads/SnowGIS_SHP.zip'
Content type 'application/zip' length 6875824 bytes (6.6 MB)
==================================================
downloaded 6.6 MB
unzip("SnowGIS.zip")
getwd()
[1] "/home/esuess/classes/2019-2020/01 - Fall 2019/Stat651/Presentations/08_spatial"
dsn <- paste0("./SnowGIS_SHP/")
list.files(dsn)
 [1] "Cholera_Deaths.dbf"          "Cholera_Deaths.prj"          "Cholera_Deaths.sbn"         
 [4] "Cholera_Deaths.sbx"          "Cholera_Deaths.shp"          "Cholera_Deaths.shx"         
 [7] "OSMap_Grayscale.tfw"         "OSMap_Grayscale.tif"         "OSMap_Grayscale.tif.aux.xml"
[10] "OSMap_Grayscale.tif.ovr"     "OSMap.tfw"                   "OSMap.tif"                  
[13] "Pumps.dbf"                   "Pumps.prj"                   "Pumps.sbx"                  
[16] "Pumps.shp"                   "Pumps.shx"                   "README.txt"                 
[19] "SnowMap.tfw"                 "SnowMap.tif"                 "SnowMap.tif.aux.xml"        
[22] "SnowMap.tif.ovr"            
ogrListLayers(dsn)
[1] "Pumps"          "Cholera_Deaths"
attr(,"driver")
[1] "ESRI Shapefile"
attr(,"nlayers")
[1] 2
ogrInfo(dsn, layer = "Cholera_Deaths")
Source: "/home/esuess/classes/2019-2020/01 - Fall 2019/Stat651/Presentations/08_spatial/SnowGIS_SHP", layer: "Cholera_Deaths"
Driver: ESRI Shapefile; number of rows: 250 
Feature type: wkbPoint with 2 dimensions
Extent: (529160.3 180857.9) - (529655.9 181306.2)
CRS: +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy +units=m +no_defs  
LDID: 87 
Number of fields: 2 
   name type length typeName
1    Id    0      6  Integer
2 Count    0      4  Integer
CholeraDeaths <- readOGR(dsn, layer = "Cholera_Deaths")
OGR data source with driver: ESRI Shapefile 
Source: "/home/esuess/classes/2019-2020/01 - Fall 2019/Stat651/Presentations/08_spatial/SnowGIS_SHP", layer: "Cholera_Deaths"
with 250 features
It has 2 fields
summary(CholeraDeaths)
Object of class SpatialPointsDataFrame
Coordinates:
               min      max
coords.x1 529160.3 529655.9
coords.x2 180857.9 181306.2
Is projected: TRUE 
proj4string :
[+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy +units=m
+no_defs]
Number of points: 250
Data attributes:
       Id        Count       
 Min.   :0   Min.   : 1.000  
 1st Qu.:0   1st Qu.: 1.000  
 Median :0   Median : 1.000  
 Mean   :0   Mean   : 1.956  
 3rd Qu.:0   3rd Qu.: 2.000  
 Max.   :0   Max.   :15.000  
str(CholeraDeaths@data)
'data.frame':   250 obs. of  2 variables:
 $ Id   : int  0 0 0 0 0 0 0 0 0 0 ...
 $ Count: int  3 2 1 1 4 2 2 2 3 2 ...
cholera_coords <- as.data.frame(coordinates(CholeraDeaths))
cholera_coords
cholera_coords %>% ggplot(aes(x = coords.x1, y = coords.x2)) +
  geom_point() +
  coord_quickmap()

LS0tCnRpdGxlOiAiU3BhdGlhbCBEYXRhIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIHBkZl9kb2N1bWVudDogZGVmYXVsdAogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCgoKYGBge3J9CmxpYnJhcnkobWRzcikKbGlicmFyeShzcCkKcGxvdChDaG9sZXJhRGVhdGhzKQpgYGAKCkl0IGlzIHByb2JhYmx5IGJlc3QgdG8gZG8gdGhpcyBpbiBhbiBSIFByb2plY3QuCgpgYGB7cn0KbGlicmFyeShyZ2RhbCkKCmRvd25sb2FkLmZpbGUoImh0dHA6Ly9ydHdpbHNvbi5jb20vZG93bmxvYWRzL1Nub3dHSVNfU0hQLnppcCIsCiAgICAgICAgICAgICAgZGVzdD0iU25vd0dJUy56aXAiLCBtb2RlPSJ3YiIpCnVuemlwKCJTbm93R0lTLnppcCIpCgpnZXR3ZCgpCgpkc24gPC0gcGFzdGUwKCIuL1Nub3dHSVNfU0hQLyIpCmxpc3QuZmlsZXMoZHNuKQoKYGBgCgpgYGB7cn0Kb2dyTGlzdExheWVycyhkc24pCmBgYAoKYGBge3J9Cm9nckluZm8oZHNuLCBsYXllciA9ICJDaG9sZXJhX0RlYXRocyIpCmBgYAoKYGBge3J9CkNob2xlcmFEZWF0aHMgPC0gcmVhZE9HUihkc24sIGxheWVyID0gIkNob2xlcmFfRGVhdGhzIikKYGBgCgpgYGB7cn0Kc3VtbWFyeShDaG9sZXJhRGVhdGhzKQpgYGAKCmBgYHtyfQpzdHIoQ2hvbGVyYURlYXRoc0BkYXRhKQpgYGAKYGBge3J9CmNob2xlcmFfY29vcmRzIDwtIGFzLmRhdGEuZnJhbWUoY29vcmRpbmF0ZXMoQ2hvbGVyYURlYXRocykpCmNob2xlcmFfY29vcmRzCgpjaG9sZXJhX2Nvb3JkcyAlPiUgZ2dwbG90KGFlcyh4ID0gY29vcmRzLngxLCB5ID0gY29vcmRzLngyKSkgKwogIGdlb21fcG9pbnQoKSArCiAgY29vcmRfcXVpY2ttYXAoKQpgYGAKCg==