Exercises

Prof. Eric A. Suess

Maximum Likelihood Estimation

- 1. Find the MLE of θ based on a random sample $X_1, X_2, ..., X_n$ from each of the following p.d.f.'s.
 - (a)

$$f(x|\theta) = \theta x^{\theta - 1}$$

where 0 < x < 1, $0 < \theta$, and 0 otherwise.

(b)

$$f(x|\theta) = (\theta+1)x^{-\theta-2}$$

where $1 < x, 0 < \theta$, and 0 otherwise.

(c)
$$f(x|\theta) = \theta^2 x e^{-\theta x}$$

where 0 < x, $0 < \theta$, and 0 otherwise.

(d)

$$f(x|\theta) = \theta(1-\theta)^{x-1}$$

for $x = 1, 2, ..., 0 < \theta < 1$, and 0 otherwise

- 2. Find the asymptotic variance of the MLE in each part of question 1.
- 3. Consider two independent random samples $X_1, X_2, ..., X_n \sim N(\mu, \sigma_1^2)$ and $Y_1, Y_2, ..., Y_m \sim N(\mu, \sigma_2^2).$
 - (a) Using the data from the two random samples find the m.l.e. of μ , σ_1^2 , and σ_2^2 .
 - (b) Find the asymptotic variance of μ .