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1 Assumptions (from IMG_1173)

We consider a regular parametric model with density 𝑓(𝑥 ∣ 𝜃) and log-likelihood log 𝑓(𝑥 ∣ 𝜃).
The assumptions are the standard “regular case of estimation”:

1. Differentiability in the parameter:

𝜕
𝜕𝜃𝑓(𝑥 ∣ 𝜃) exists, 𝜃 lies in an open interval.

2. The log-density is differentiable and we may treat 𝑓(𝑋 ∣ 𝜃) and log 𝑓(𝑋 ∣ 𝜃) as random
variables whose expectations can be differentiated w.r.t. 𝜃. In particular, we can move
the derivative inside the expectation:

𝜕
𝜕𝜃 𝔼𝜃[𝑔(𝑋, 𝜃)] = 𝔼𝜃[ 𝜕

𝜕𝜃𝑔(𝑋, 𝜃)] ,

for 𝑔 equal to 𝑓(⋅ ∣ 𝜃) or log 𝑓(⋅ ∣ 𝜃), whenever the objects exist.
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3. Finite Fisher’s information:

𝔼𝜃[( 𝜕
𝜕𝜃 log 𝑓(𝑋 ∣ 𝜃))

2
] < ∞.

We will write the score for one observation as

𝑈𝜃(𝑋) = 𝜕
𝜕𝜃 log 𝑓(𝑋 ∣ 𝜃).

2 Theorem (from IMG_1174)

Let 𝑇 = 𝑡(𝑋1, … , 𝑋𝑛) be an unbiased estimator of 𝜃, so 𝔼𝜃[𝑇 ] = 𝜃. Under Assumptions 1–3,
the variance of 𝑇 satisfies the Cramér–Rao lower bound

Var𝜃(𝑇 ) ≥ 1
𝑛 𝔼𝜃[( 𝜕

𝜕𝜃 log 𝑓(𝑋 ∣ 𝜃))2]
= 1

𝑛 𝐼(𝜃) ,

where 𝐼(𝜃) = 𝔼𝜃[𝑈𝜃(𝑋)2] is the Fisher information for a single observation.

3 Proof — page 1 (setup)

Because 𝑇 is unbiased,
𝔼𝜃[𝑇 ] = 𝜃.

Differentiate both sides w.r.t. 𝜃 and use the interchange of derivative and expectation together
with the joint density 𝑓(𝑥1, … , 𝑥𝑛 ∣ 𝜃):

1 = ∫ 𝑡 𝜕
𝜕𝜃𝑓(𝑥1, … , 𝑥𝑛 ∣ 𝜃) 𝑑𝑥 = ∫ 𝑡 𝜕

𝜕𝜃 log 𝑓(𝑥1, … , 𝑥𝑛 ∣ 𝜃) 𝑓(𝑥1, … , 𝑥𝑛 ∣ 𝜃) 𝑑𝑥 = 𝔼𝜃[𝑇 𝑈𝜃(𝑋1, … , 𝑋𝑛)],

where the joint score is the sum of the marginal scores,

𝑈𝜃(𝑋1, … , 𝑋𝑛) =
𝑛

∑
𝑖=1

𝜕
𝜕𝜃 log 𝑓(𝑋𝑖 ∣ 𝜃).
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4 Proof — page 2 (from IMG_1175)

Normalization of the density gives

1 = ∫ 𝑓(𝑥 ∣ 𝜃) 𝑑𝑥 ⇒ 0 = ∫ 𝜕
𝜕𝜃𝑓(𝑥 ∣ 𝜃) 𝑑𝑥 = ∫ 𝜕

𝜕𝜃 log 𝑓(𝑥 ∣ 𝜃) 𝑓(𝑥 ∣ 𝜃) 𝑑𝑥 = 𝔼𝜃[𝑈𝜃(𝑋)].

Hence,
Cov𝜃 (𝑇 , 𝑈𝜃(𝑋1, … , 𝑋𝑛)) = 1,

and
Var𝜃(𝑈𝜃(𝑋1, … , 𝑋𝑛)) = 𝔼𝜃[𝑈𝜃(𝑋1, … , 𝑋𝑛)2] = 𝑛 𝐼(𝜃) < ∞.

5 Proof — page 3 (from IMG_1176, corrected last step)

Start with the correlation between 𝑇 and the joint score 𝑈𝜃(𝑋1, … , 𝑋𝑛):

𝜌(𝑇 , 𝑈𝜃) ≡ Cov𝜃(𝑇 , 𝑈𝜃(𝑋1, … , 𝑋𝑛))
√Var𝜃(𝑇 ) √Var𝜃(𝑈𝜃(𝑋1, … , 𝑋𝑛))

.

From the previous page we have Cov𝜃(𝑇 , 𝑈𝜃) = 1, hence

𝜌(𝑇 , 𝑈𝜃) = 1
√Var𝜃(𝑇 ) √Var𝜃(𝑈𝜃(𝑋1, … , 𝑋𝑛))

.

Because |𝜌| ≤ 1,
1 ≥ 𝜌(𝑇 , 𝑈𝜃)2 = 1

Var𝜃(𝑇 ) Var𝜃(𝑈𝜃(𝑋1, … , 𝑋𝑛)) .

Invert both sides (all terms are positive) to obtain

Var𝜃(𝑇 ) Var𝜃(𝑈𝜃(𝑋1, … , 𝑋𝑛)) ≥ 1.

Substituting Var𝜃(𝑈𝜃(𝑋1, … , 𝑋𝑛)) = 𝑛𝐼(𝜃) yields

Var𝜃(𝑇 ) ≥ 1
𝑛 𝐼(𝜃) .

□
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