<- 43; sigma <- 5.97 # parameters
mu <- 300
n
<- rnorm(n, mu, sigma)
x
hist(x, probability = TRUE)
Fitting Models fitdistrplus
Fitting Models
Random sample from the normal distribution, estimate the parameters
simulated sample
Estimate the parameters using MLE
library(fitdistrplus)
Loading required package: MASS
Loading required package: survival
plotdist(x, histo = TRUE, demp = TRUE)
<- fitdist(x, "norm", method = "mle")
fit.norm summary(fit.norm)
Fitting of the distribution ' norm ' by maximum likelihood
Parameters :
estimate Std. Error
mean 42.941226 0.3513940
sd 6.086323 0.2484731
Loglikelihood: -967.4948 AIC: 1938.99 BIC: 1946.397
Correlation matrix:
mean sd
mean 1 0
sd 0 1
<- fitdist(x, "gamma", method = "mle")
fit.gam summary(fit.gam)
Fitting of the distribution ' gamma ' by maximum likelihood
Parameters :
estimate Std. Error
shape 48.11161 3.91456164
rate 1.12040 0.09163608
Loglikelihood: -970.5232 AIC: 1945.046 BIC: 1952.454
Correlation matrix:
shape rate
shape 1.0000000 0.9948079
rate 0.9948079 1.0000000
Plot the fitted model on the histogram
denscomp(list(fit.norm, fit.gam), legendtext = c("Normal", "Gamma"))
cdfcomp(list(fit.norm, fit.gam), legendtext = c("Normal", "Gamma"))
qqcomp(list(fit.norm, fit.gam), legendtext = c("Normal", "Gamma"))
Random sample from the exponential distribution, estimate the parameters
simulated sample
<- 11.34 # parameter
lambda <- 30
n
<- rexp(n, rate = lambda)
x
hist(x, probability = TRUE)
Estimate the parameters using MLE
plotdist(x, histo = TRUE, demp = TRUE)
<- fitdist(x, "exp", method = "mle")
fit.exp summary(fit.exp)
Fitting of the distribution ' exp ' by maximum likelihood
Parameters :
estimate Std. Error
rate 12.91004 2.357039
Loglikelihood: 46.74015 AIC: -91.4803 BIC: -90.07911
<- fitdist(x, "gamma", method = "mle")
fit.gam summary(fit.gam)
Fitting of the distribution ' gamma ' by maximum likelihood
Parameters :
estimate Std. Error
shape 0.9435025 0.2133874
rate 12.1788161 3.5814844
Loglikelihood: 46.77363 AIC: -89.54725 BIC: -86.74486
Correlation matrix:
shape rate
shape 1.0000000 0.7690735
rate 0.7690735 1.0000000
Plot the fitted model on the histogram
denscomp(list(fit.exp, fit.gam), legendtext = c("Exponential", "Gamma"))
cdfcomp(list(fit.exp, fit.gam), legendtext = c("Exponential", "Gamma"))
qqcomp(list(fit.exp, fit.gam), legendtext = c("Exponential", "Gamma"))