
Chebyshev and Markov Inequalities
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Probability Inequalities

Markov’s Inequality

For a positive random variable 𝑋 and any 𝑎 > 0, we cannot put unlimited probability in the
right tail. The precise statement is:

Pr(𝑋 ≥ 𝑎) ≤ 𝔼[𝑋]
𝑎 .

Proof idea.
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Define the indicator function as

𝐼 = 1 𝑋 ≥ 𝑎
𝐼 = 0 𝑋 < 𝑎

𝔼[𝑋] = 𝔼[𝔼[𝑋|𝐼]] = 𝔼[𝑔(𝐼)] = 𝔼[𝑋|𝐼 = 0]𝑃𝑟(𝑋 < 𝑎) + 𝔼[𝑋|𝐼 = 1]𝑃𝑟(𝑋 ≥ 𝑎).

This is an application of the Law of Total Expectation.

Note: 𝑃(𝑋 < 𝑎) ≥ 0 and 𝔼[𝑋|𝐼 = 0] ≥ 0 since 𝑋 > 0.

So

𝔼[𝑋] ≥ 𝔼[𝑋|𝐼 = 1]𝑃𝑟(𝑋 ≥ 𝑎)

When 𝐼 = 1, 𝑋 ≥ 𝑎. So

𝔼[𝑋] ≥ 𝔼[𝑎|𝐼 = 1]𝑃𝑟(𝑋 ≥ 𝑎) = 𝑎𝑃𝑟(𝑋 ≥ 𝑎)

Therefore,

Pr(𝑋 ≥ 𝑎) ≤ 𝔼[𝑋]
𝑎 .

An equivalent parameterization sets 𝑎 = 𝑏𝔼[𝑋] (with 𝑏 > 0), which yields

Pr(𝑋 ≥ 𝑏 𝔼[𝑋]) ≤ 1
𝑏 .

Some quick consequences (from the notes):

𝑏 Bound on 𝑃(𝑋 ≥ 𝑏𝜇)
1 𝑃(𝑋 ≥ 𝜇) ≤ 1
2 𝑃(𝑋 ≥ 2𝜇) ≤ 1

2
3 𝑃(𝑋 ≥ 3𝜇) ≤ 1

3
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Chebyshev’s Inequality

For any random variable 𝑋 with finite mean 𝜇 and finite variance 𝜎2, measurement error is
bounded in the sense that for 𝑘 > 0:

Pr(|𝑋 − 𝜇| ≥ 𝑘 𝜎) ≤ 1
𝑘2 .

Proof via Markov.
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Let 𝑌 = (𝑋 − 𝜇)2, which is nonnegative. By Markov’s inequality,

Pr(𝑌 ≥ 𝑘2𝜎2) ≤ 𝔼[𝑌 ]
𝑘2𝜎2 = 𝜎2

𝑘2𝜎2 = 1
𝑘2 .

Since {𝑌 ≥ 𝑘2𝜎2} ≡ {|𝑋 − 𝜇| ≥ 𝑘𝜎}, the Chebyshev bound follows.

Equivalently, writing 𝑘 = 𝑏 gives

Pr(|𝑋 − 𝜇| ≥ 𝑏 𝜎) ≤ 1
𝑏2 ,

and hence

Pr(|𝑋 − 𝜇| < 𝑏 𝜎) ≥ 1 − 1
𝑏2 .
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Typical values (as in the notes):

𝑏 Pr(|𝑋 − 𝜇| ≥ 𝑏𝜎) Pr(|𝑋 − 𝜇| < 𝑏𝜎)
1 ≤ 1 ≥ 0
2 ≤ 1

4 ≥ 3
4

3 ≤ 1
9 ≥ 8

9

One–point probability interval (single draw)

From Chebyshev’s inequality,

Pr(𝜇 − 𝑏𝜎 < 𝑋 < 𝜇 + 𝑏𝜎) ≥ 1 − 1
𝑏2 .

This rearranges the absolute deviation statement to a two–sided interval around 𝜇.

Confidence interval for the mean with a single observation (𝑛 = 1)

Using the same bound,

Pr(|𝑋 − 𝜇| < 𝑏𝜎) ≥ 1 − 1
𝑏2 ,

which is the same interval as above.

So we are at least 1 − 1
𝑏2 percent confident that the interval (𝑥 − 𝑏𝜎, 𝑥 + 𝑏𝜎) contains 𝜇.

Confidence interval for the mean of 𝑛 i.i.d. observations (known 𝜎)

Let 𝑋̄ be the sample mean of 𝑋1, … , 𝑋𝑛 with common mean 𝜇 and variance 𝜎2. Since
Var(𝑋̄) = 𝜎2/𝑛, Chebyshev gives, for any 𝑏 > 0,

Pr(|𝑋̄ − 𝜇| ≤ 𝑏 𝜎√𝑛) ≥ 1 − 1
𝑏2 .

Equivalently, with probability at least 1 − 1
𝑏2 , the interval

(𝑋̄ − 𝑏 𝜎√𝑛, 𝑋̄ + 𝑏 𝜎√𝑛)

contains 𝜇.
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Example (from the notes)

Taking 𝑏 = 2 (and 𝜎 known), a Chebyshev interval

(𝑋̄ − 2 𝜎√𝑛, 𝑋̄ + 2 𝜎√𝑛)

has at least

1 − 1
22 = 3

4 = 75%

confidence.

Note: Chebyshev bounds are distribution-free and can be very conservative.
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