Chebyshev and Markov Inequalities

Table of contents

Probability Inequalities	1
Markov's Inequality	1
Chebyshev's Inequality	4
One—point probability interval (single draw)	5
Confidence interval for the mean with a single observation $(n = 1) \dots \dots \dots$	5
Confidence interval for the mean of n i.i.d. observations (known σ)	5
Example (from the notes)	6

Probability Inequalities

Markov's Inequality

For a positive random variable X and any a > 0, we cannot put unlimited probability in the right tail. The precise statement is:

$$\Pr(X \geq a) \leq \frac{\mathbb{E}[X]}{a}.$$

Proof idea.

Gamma PDF with Split at a

Gamma(shape = 2.2, rate = 1)

Define the indicator function as

$$I = 1 \quad X \ge a$$
$$I = 0 \quad X < a$$

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|I]] = \mathbb{E}[g(I)] = \mathbb{E}[X|I=0] Pr(X < a) + \mathbb{E}[X|I=1] Pr(X \geq a).$$

This is an application of the Law of Total Expectation.

Note: $P(X < a) \ge 0$ and $\mathbb{E}[X|I = 0] \ge 0$ since X > 0.

So

$$\mathbb{E}[X] \geq \mathbb{E}[X|I=1] Pr(X \geq a)$$

When $I = 1, X \ge a$. So

$$\mathbb{E}[X] \geq \mathbb{E}[a|I=1] Pr(X \geq a) = a Pr(X \geq a)$$

Therefore,

$$\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}.$$

An equivalent parameterization sets $a = b\mathbb{E}[X]$ (with b > 0), which yields

$$\Pr(X \ge b \, \mathbb{E}[X]) \le \frac{1}{b}.$$

Some quick consequences (from the notes):

$$\begin{array}{ll} b & \text{Bound on } P(X \geq b\mu) \\ \hline 1 & P(X \geq \mu) \leq 1 \\ 2 & P(X \geq 2\mu) \leq \frac{1}{2} \\ 3 & P(X \geq 3\mu) \leq \frac{1}{3} \\ \end{array}$$

Chebyshev's Inequality

For any random variable X with finite mean μ and finite variance σ^2 , measurement error is bounded in the sense that for k > 0:

$$\Pr(|X - \mu| \ge k \, \sigma) \le \frac{1}{k^2}.$$

Proof via Markov.

Symmetric PDF Centered at Zero

 $X \sim N(0, \sigma^2)$, marks at $-k\sigma$ and $k\sigma$

Let $Y = (X - \mu)^2$, which is nonnegative. By Markov's inequality,

$$\Pr(Y \ge k^2 \sigma^2) \le \frac{\mathbb{E}[Y]}{k^2 \sigma^2} = \frac{\sigma^2}{k^2 \sigma^2} = \frac{1}{k^2}.$$

Since $\{Y \ge k^2 \sigma^2\} \equiv \{|X - \mu| \ge k\sigma\}$, the Chebyshev bound follows.

Equivalently, writing k = b gives

$$\Pr(|X - \mu| \ge b\,\sigma) \le \frac{1}{b^2},$$

and hence

$$\Pr(|X - \mu| < b \sigma) \ge 1 - \frac{1}{b^2}.$$

Typical values (as in the notes):

\overline{b}	$\Pr(X - \mu \ge b\sigma)$	$\Pr(X - \mu < b\sigma)$
1	≤ 1	≥ 0
2	$\leq \frac{1}{4}$	$\geq \frac{3}{4}$
3	$\leq \frac{\hat{1}}{9}$	$\geq \frac{\hat{8}}{9}$

One-point probability interval (single draw)

From Chebyshev's inequality,

$$\Pr(\mu - b\sigma < X < \mu + b\sigma) \ge 1 - \frac{1}{h^2}.$$

This rearranges the absolute deviation statement to a two-sided interval around μ .

Confidence interval for the mean with a single observation (n = 1)

Using the same bound,

$$\Pr(|X - \mu| < b\sigma) \ge 1 - \frac{1}{b^2},$$

which is the same interval as above.

So we are at least $1 - \frac{1}{b^2}$ percent confident that the interval $(x - b\sigma, x + b\sigma)$ contains μ .

Confidence interval for the mean of n i.i.d. observations (known σ)

Let \bar{X} be the sample mean of X_1, \dots, X_n with common mean μ and variance σ^2 . Since $\mathrm{Var}(\bar{X}) = \sigma^2/n$, Chebyshev gives, for any b > 0,

$$\Pr(|\bar{X} - \mu| \le b \frac{\sigma}{\sqrt{n}}) \ge 1 - \frac{1}{b^2}.$$

Equivalently, with probability at least $1 - \frac{1}{b^2}$, the interval

$$\left(\bar{X} - b\,\frac{\sigma}{\sqrt{n}},\ \bar{X} + b\,\frac{\sigma}{\sqrt{n}}\right)$$

contains μ .

Example (from the notes)

Taking b=2 (and σ known), a Chebyshev interval

$$\left(\bar{X}-2\,rac{\sigma}{\sqrt{n}},\; \bar{X}+2\,rac{\sigma}{\sqrt{n}}
ight)$$

has at least

$$1 - \frac{1}{2^2} = \frac{3}{4} = 75\%$$

confidence.

Note: Chebyshev bounds are distribution-free and can be very conservative.