Box—Muller Method and Change of Variables

Reconstructed from handwritten notes
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Functions of Several Variables

Suppose (x,y) are jointly distributed and mapped onto (u,v), jointly distributed.
u=g,(z,y)

v = gy(w,Yy)

and that the transformation can be inverted:

T = hl <u7 1})

Yy = h2 (’LL, /U)

Assume h; and h, have continuous partial derivatives and that the Jacobian

2hl 2hl
J = %u %v £ 0
ou'r o2
Then

fUV(uvv) = fXY(hl(uvv>7 h2(uvv)) ‘J|

Example: Polar Coordinates from Independent Normals

Let X and Y be independent N(0,1) random variables. Find the joint density of the polar
coordinates R and ©. Recall polar coordinates:

N

0 = tan ! <y>

X

and the inverse transformation
x =rcosf

y = rsinf

So

fre(ri0) = fxy(z,y)|J].

Find J:

J = det

ox

90| _ cosf) —rsinf
% _det[siHG rcosﬁ]
00

PSP &



= rcos?f + rsin’

= 7 (cos? 6 + sin® 0)

=

Therefore

Tro(r,0) =1 fxy(rcosf, rsinf).

Because X and Y are independent standard normals,

1 2 1 ,
—_ —T /2 _ —y /2
r)= € ) = —F—E¢€ .
Hence
fro(r,0) =1 fx(rcos0) fy(rsinb)
=r 1 677"2 cos? 0/2 1 677"2 sin? 0/2

Vor V2o

—r i 6—%7“2 (cos? O+sin’ 6)
2m

2
=r—e " /2
27

Thus R and © are independent with
frr)=re ™2 >0 (Rayleigh)

fe(8) = %7 0 € (0,27) (Uniform).

Visualizing the Polar Transformation in R

We can illustrate the mapping of a random Euclidean point (X, Y") to polar coordinates (R, ©),
with © measured counter-clockwise from the positive X-axis.

set.seed(123)

# Generate a single random point from N(0,1) x N(0,1)
X <= rnorm(1)
y <- rnorm(1)

# Polar conversion

r <- sqrt(x"2 + y~2)

theta <- atan2(y, x) # in (-pi, pil

theta_ccw <- ifelse(theta < O, theta + 2*pi, theta) # map to [0, 2#*pi)



# Plot base
plot(0, 0, type = "n", xlim = c(-3,3), ylim = c(-3,3),

xlab = "X", ylab = "Y", main = "Euclidean to Polar Coordinates (CCW angle)")
abline(h = 0, v = 0, 1ty = 3) # dashed axes for reference

# Point and radius vector
points(x, y, col = "red", pch = 19, cex = 1.5)
arrows(0, 0, x, y, col = "blue", lwd = 2)

# Dashed circle at radius R
symbols(0, O, circles = r, inches = FALSE, add = TRUE, 1ty = 2)

# Dashed line through (0,0) and (x,y) using angle (avoids slope issues when x ~ 0)
L <= g
lines(c(-L, L) * cos(theta), c(-L, L) * sin(theta), lty = 3)

# Annotate R
text(x, y, labels = "(X,Y)", pos = 4)
text(x/2, y/2, labels = expression(R), pos = 2)

# Counter-clockwise arc from O to theta_ccw

arc_r <- max(0.8, min(1.2, 0.8 * r)) # keep the arc visible

arc_t <- seq(0, theta_ccw, length.out = 200)

lines(arc_r * cos(arc_t), arc_r * sin(arc_t), col = "darkgreen", lwd = 2)

# Angle label at midpoint of the arc

mid _t <- theta_ccw / 2

text(arc_r * cos(mid_t), arc_r * sin(mid_t), labels = expression(theta),
col = "darkgreen", pos = 3)



Euclidean to Polar Coordinates (CCW angle)
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Figure 1: Euclidean point and its polar representation

This plot shows:

e (X,Y) as the red dot in Euclidean space.
e R as the radius of the dashed circle.
e O measured counter-clockwise from the positive X-axis, indicated by the green arc.

e Dashed lines through the origin along the axes and through (X,Y").
This plot shows:

e (X,Y) as the red dot in Euclidean space.
e R as the radius of the dashed circle.
e O measured counter-clockwise from the positive X-axis, indicated by the green arc.

e Dashed lines through the origin along the X-axis and through (X,Y).



Box—Muller Method

Generate standard normal random values (X,Y") from independent uniforms (U, U,).

1. Generate U,, U, d Unif(0, 1).

2. —2logU; ~ Exp(3) and 27U, ~ Unif(0, 2).

3. Set X = /—2logU, cos(2nU,) and Y = /=2 logU, sin(27U,), which yields X ~
N(0,1) and Y ~ N(0,1).

R Implementation

set.seed (42)

# Box-Muller generator: returns n pairs (X, Y)
box_muller <- function(n) {

ul <- runif(n)

u2 <- runif(n)

r <- sqrt(-2 * log(ul))

theta <- 2 * pi * u2

x <= r * cos(theta)

y <= r * sin(theta)

data.frame(x = x, y = y)

# Example: draw 10,000 samples and check moments

samples <- box_muller (10000)

c(mean_x = mean(samples$x), var_x = var(samples$x),
mean_y = mean(samples$y), var_y = var(samples$y))

mean_x var_x mean_y var_y
0.0005101192 1.0244204655 0.0006820139 0.9999651650

# Quick visual checks

par(mfrow = c(1, 3))

hist(samples$x, breaks = 40, main = "X ~ N(0,1)")

hist(samples$y, breaks = 40, main = "Y ~ N(O,1)")

plot(samples$x, samples$y, pch = 16, cex = 0.4,
main = "Scatter of (X,Y)")



X ~N(0,1) Y ~ N(0,1) Scatter of (X,Y)
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Figure 2: Diagnostics for Box—Muller samples

par(mfrow = c(1, 1))

Notes: The derivations above follow the change-of-variables formula with the polar
transformation, showing that R is Rayleigh and © is Uniform, which leads directly
to the Box—Muller algorithm.

Derivation of the Rayleigh Distribution

1. From Uniform to Exponential via the Inverse CDF Method

Let U ~ Unif(0,1). To generate an exponential random variable 7" with rate A = % (mean 2),
we use the Inverse CDF Method.

The CDF of Exp(3) is

Fr(t)=1—¢e%2 t>0.

Set Fp(t) = U and solve for t:

U=1—¢e1?

et?2=1-U



—L—In(1-D)

t=-—2In(1-"0).

Since 1 — U ~ Unif(0, 1) as well, we can equivalently write
t=—-2InU.

Thus

T =-2InU ~ Exp(1/2).

2. From Exponential to Rayleigh

We want R such that R? ~ Exp(3).
That is, if T~ Exp(1/2) then R = /T is Rayleigh distributed.

The CDF of R is
Fr(r)=P(R<7)=P(HT<7r)=P(T <r?).
Because T' ~ Exp(1/2),

Fp(t)=1—¢712

So

Frp(r)=Fp(r?) =1—e "2 r>0.
Differentiating gives the Rayleigh PDF:

d >
fr(r) = %FR(T) =re "2, r>0.




3. Inverse CDF Check for Rayleigh

To generate R directly from U ~ Unif(0, 1):
Set Fr(r)=U:

U=1—e"/?

e =1-U

r? =—-21n(1-"0)

r=+—21In(l1-0).

Since 1 — U ~ Unif(0, 1), we can write
r=+v—-2hU,

which matches the Box—Muller derivation.

R Implementation

# Generate Rayleigh samples using inverse transform
rayleigh_inverse <- function(n) {

u <- runif(n)

r <- sqrt(-2 * log(u))

r

# Check empirical vs theoretical mean

set.seed(123)

samples_r <- rayleigh_inverse(10000)

c(emp_mean = mean(samples_r), emp_var = var(samples_r),
th_mean = sqrt(pi/2), th_var = (4 - pi)/2)

emp_mean emp_var th_mean th_var
1.2583035 0.4248272 1.2533141 0.4292037

hist(samples_r, breaks = 40, probability = TRUE,
main = "Rayleigh(=1)", xlab = "r")

curve(x * exp(-x~2/2), from = 0, to = 5, add = TRUE, col = "red", lwd = 2)
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Figure 3: Plot generated by R code

Thus, the Rayleigh distribution naturally arises as the distribution of
R = +/—2InU, completing the connection between uniforms, exponentials,
and normals via the Box—Muller construction.

Deriving the Rayleigh via the Inverse CDF Method

1) From Uniform to Exp(1)
Let U ~ Unif(0,1). The target CDF for T ~ Exp(3) is Fp(t) =1 — e t? t>0.

T
Set U = Fp(T) and solve for T: U = 1 —e /2 T2 =1 -U -5 = log(1—-U) T =
—2 log(1 —1U).

Since 1 — U £ U for U ~ Unif(0, 1), an equivalent generator is T = —2 log U, which yields
T ~ Exp(3).

2) From Exp(3) to Rayleigh

Define the transformation R = /T

10



Forr>0,P(R<7)=P(VT <r)=P(T <1?) = Fp(r?) =1—e""/2.

d
Thus the CDF of R is Fr(r) = 1 — e”/2, r > 0, and the PDF is fr(r) = d*FR(ﬂ =
T

re "/ 2 r >0, which is the Rayleigh distribution with parameter o = 1.
3) Verifying via the Inverse CDF for Rayleigh

Start from U ~ Unif(0,1) and set U = F(R) with Fp(r) =1—e"/2 r > 0.
2

Solve for R: U=1—e B2 B2 -1 _( —R? =log(l—U) R=+/—21log(1—-"0).

Again using 1 — U Ly , an equivalent generator is R = /—2 logU.

Combining parts (1) and (2), if T = —2logU ~ Exp(1) and R = VT, then Fp(r) = 1 —
e /2 and fr(r) = re T/ 2. confirming that the transformation produces a Rayleigh random
variable.

The Bivariate Normal Distribution

We introduce the general bivariate normal distribution with different means, variances, and
correlation.
Notation: BV N(puy, fty, 0%, 0%, p)-

1) Adding Means and Variances

Let the random vector be
7 _ X
=1y
_ |Hx
u= 2],
and its covariance matrix without correlation as
2
o 0
o= X .
=[5 4l

Thus if X ~ N(uy,0%) and Y ~ N(uy, 0% ) independently, then

We specify its mean vector as

Z~ BVN(:UXMUY7O—§(7 0—%/70)'

11



2) Adding Correlation p
To introduce correlation, the covariance matrix becomes

2
w—| 9%  PIXOy
= 5 )
POxOy Oy

Thus the full distribution is

Z ~ BVN(/'LX7/'LY70—2X7U§/7P)'

Its density is

L 1 T — pix)’ r—px)(y—p y— piy)?
ny(a?,y): exp| — 5 ( 2X) —2p( x)( ) + ( Qy) .
2moxoy /1= p? 2(1—p?) Ox OxOy oy
In compact matrix notation, with

-1 _ 1/02 _p/<O'XUY). 1
> ‘[—p/w}fay) 102 } =0

27

the density can be written as

e (#) = s (= (a =) 2 @ — ).

This general form compactly encodes the means, variances, and correlation structure of the
bivariate normal distribution.

Bivariate Normal BVN(uy, iy, 0%, 0%, p)

We derive the joint density in two steps: first with arbitrary means and variances (no correla-
tion), then add correlation p using matrix notation.

12



1) Add means and variances (no correlation)

125

Let the random vector be Z = [X} with mean p = [
Y My

o% 0
0 o}
Equivalently, X ~ N(uy,0%) and Y ~ N(uy,0%) independently. The joint PDF factors:

_ 1 L[ (z—px)?® | (y—py)?
fX,Y('Iay) - 27TO'XO'Y exp{ ) |: O_g( + 0_%/ .

} and covariance matrix X, =

T 1 1
In matrix notation, with z = , z) = ex {— z— ) Xy (z— },
-1 1 0'2 0
where S| = 0% 0% and &, = [ /OX 1/0%].

Thus Z ~ BVN(:“’X?NY)O%O U%GO)'

2) Add correlation p

Introduce covariance Cov(X,Y) = poyoy with p € (—1,1). The covariance matrix becomes
5 [ 0% pa)gay} ‘
POXxTy Oy

Its determinant and inverse are |X| = 0% 03 (1 — p?)

wol 1 [ 1/0% _p/(UXUY):| .
1—p? [=p/(oxoy) 1/o%
The bivariate normal density with correlation p is

1 1 )[(w—ﬂx)Q o, (&= 1)y — py) (y—uy)2]}_

= expy — —2p +
2oy oy \/1—p? { 2(1—p? 0% OxOy oy

fX,Y(afa Y)

In compact matrix form, fy y(z) =

1 Te—1
o T exp{ 5 @— 0=z - p)}.
Notes: 1) When p = 0, the off-diagonal terms vanish and the density reduces to
the independent case above.
2) Existence requires oy > 0, oy > 0, and |p| < 1 so that X is positive definite.
3) One can obtain Z by an affine transform of a standard normal N ~ N(0,1,)
using a matrix square root (e.g., Cholesky): Z = u + LN with LLT = 3.



Deriving the Bivariate Normal BV N (uy, iy, 0%, 0%, p) via PDF
Transformations

% N(0,1) and joint PDF f(z) =

We use matrix notation. Let z = (2q,25)" with 2, 2,
<37

—exXpy——2Z Zg.

or P12

Define 1 = (py, pty) ' and D = diag(oy, oy ).

1) Add Means and Variances (Independent Case)

0
Consider the affine map x, = pt+ D z. Then z = D™!(x, — u) and the Jacobian is |det 8—Z =
X0
1
det D1 = — -
0x0y

By the PDF method, fx () = fz(D '(xq — p)) |[det D7!|.

2 2
1 1 Ty — Mtx Yo — MUy
Therefore fx, (o,40) = 37 EXP{‘Q [(X> i <ay ,

. . . . . . . 2 2
which is the independent bivariate normal with means py, ity and variances o%, oy-.

2) Add Correlation p (Keep Means and Variances)

Work with centered variables X, = x, — p and construct X = CXx,, where C =
1 0
o —
Ox

Set the final variables as x = p+ %X = u+ C(xq — p).

det %

Ix = ‘det C’l‘ =

1
The Jacobian of the map x, = x equals Wik
-p
Using the PDF method again with translation invariance of the Jacobian, we obtain fx(x) =
fx, (CH(x—p) + ) [det C 1.
After algebra (or by composing the two linear maps on z), the covariance of x is

2
Y= p :Xa poa)gay] , and the joint PDF simplifies to the standard BV N form fx y(z,y) =
x0y Y
1

2 2
1 T — fhx T—px\ (Y= My Y — My
2 oyoy /1 — p? exp{ 2(1—p?) [( Ox ) 2p< 0x Oy * Oy .

14



Matrix Notation Summary

o% POxOy
POIxOy oy
1 { 1 Tw—1 } —1
as X)= ——— exp ——(x — X(x— , where det ¥ = 0202 (1—p?)and ¥~ =
1 oy “POxOy
(1—p?) ooy [—poxoy o% '
The two-step construction explicitly shows how translation and diagonal scaling
introduce means and variances (with Jacobian |det D!|), and how a subsequent
shear/rotation C introduces correlation (with Jacobian | det C™}|), yielding the full

BVN(MX? Ky 0’%@ O-%N P) denSitY'

Let = (py,pty)" and ¥ = [ ] . Then the density can be written compactly

15
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