Box-Muller Method and Change of Variables

Reconstructed from handwritten notes

Table of contents

Functions of Several Variables	2
Example: Polar Coordinates from Independent Normals	2
Visualizing the Polar Transformation in R	3
Box-Muller Method	6
R Implementation	6
Derivation of the Rayleigh Distribution	7
1. From Uniform to Exponential via the Inverse CDF Method	7
2. From Exponential to Rayleigh	8
3. Inverse CDF Check for Rayleigh	9
R Implementation	9
Deriving the Rayleigh via the Inverse CDF Method	10
1) From Uniform to $\text{Exp}(\frac{1}{2})$	10
2) From $\operatorname{Exp}(\frac{1}{2})$ to Rayleigh	
3) Verifying via the Inverse CDF for Rayleigh	11
The Bivariate Normal Distribution	11
1) Adding Means and Variances	11
2) Adding Correlation ρ	
Bivariate Normal $\mathrm{BVN}(\mu_X,\mu_Y,\sigma_X^2,\sigma_Y^2,\rho)$	12
1) Add means and variances (no correlation)	13
2) Add correlation ρ	13
Deriving the Bivariate Normal $BVN(\mu_X,\mu_Y,\sigma_X^2,\sigma_Y^2,\rho)$ via PDF Transformations	14
1) Add Means and Variances (Independent Case)	14
2) Add Correlation ρ (Keep Means and Variances)	
Matrix Notation Summary	15

Functions of Several Variables

Suppose (x, y) are jointly distributed and mapped onto (u, v), jointly distributed.

$$u=g_1(x,y)$$

$$v = g_2(x, y)$$

and that the transformation can be inverted:

$$x = h_1(u, v)$$

$$y = h_2(u, v)$$

Assume h_1 and h_2 have continuous partial derivatives and that the Jacobian

$$J = \begin{vmatrix} \frac{\partial}{\partial u} h_1 & \frac{\partial}{\partial v} h_1 \\ \frac{\partial}{\partial u} h_2 & \frac{\partial}{\partial v} h_2 \end{vmatrix} \neq 0$$

Then

$$f_{UV}(u,v) = f_{XY}(h_1(u,v),\,h_2(u,v))\,|J|.$$

Example: Polar Coordinates from Independent Normals

Let X and Y be independent $\mathcal{N}(0,1)$ random variables. Find the joint density of the polar coordinates R and Θ . Recall polar coordinates:

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1} \left(\frac{y}{x} \right)$$

and the inverse transformation

$$x = r \cos \theta$$

$$y = r \sin \theta$$

So

$$f_{R\Theta}(r,\theta) = f_{XY}(x,y) |J|.$$

Find J:

$$J = \det \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix} = \det \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$$

$$= r \cos^2 \theta + r \sin^2 \theta$$
$$= r (\cos^2 \theta + \sin^2 \theta)$$
$$= r.$$

Therefore

$$f_{R\Theta}(r,\theta) = r f_{XY}(r\cos\theta, r\sin\theta).$$

Because X and Y are independent standard normals,

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}.$$

Hence

$$\begin{split} &f_{R\Theta}(r,\theta) = r \, f_X(r \cos \theta) \, f_Y(r \sin \theta) \\ &= r \, \frac{1}{\sqrt{2\pi}} e^{-r^2 \cos^2 \theta/2} \, \frac{1}{\sqrt{2\pi}} e^{-r^2 \sin^2 \theta/2} \\ &= r \, \frac{1}{2\pi} \, e^{-\frac{1}{2} r^2 \, (\cos^2 \theta + \sin^2 \theta)} \\ &= r \, \frac{1}{2\pi} \, e^{-r^2/2}. \end{split}$$

Thus R and Θ are independent with

$$\begin{split} &f_R(r)=r\,e^{-r^2/2},\ r\geq 0\quad \text{(Rayleigh)}\\ &f_\Theta(\theta)=\frac{1}{2\pi},\ \theta\in (0,2\pi)\quad \text{(Uniform)}. \end{split}$$

Visualizing the Polar Transformation in R

We can illustrate the mapping of a random Euclidean point (X, Y) to polar coordinates (R, Θ) , with Θ measured **counter-clockwise** from the positive X-axis.

```
set.seed(123)

# Generate a single random point from N(0,1) x N(0,1)
x <- rnorm(1)
y <- rnorm(1)

# Polar conversion
r <- sqrt(x^2 + y^2)
theta <- atan2(y, x)  # in (-pi, pi]
theta_ccw <- ifelse(theta < 0, theta + 2*pi, theta)  # map to [0, 2*pi)</pre>
```

```
# Plot base
plot(0, 0, type = "n", xlim = c(-3,3), ylim = c(-3,3),
     xlab = "X", ylab = "Y", main = "Euclidean to Polar Coordinates (CCW angle)")
abline(h = 0, v = 0, lty = 3) # dashed axes for reference
# Point and radius vector
points(x, y, col = "red", pch = 19, cex = 1.5)
arrows(0, 0, x, y, col = "blue", lwd = 2)
# Dashed circle at radius R
symbols(0, 0, circles = r, inches = FALSE, add = TRUE, lty = 2)
# Dashed line through (0,0) and (x,y) using angle (avoids slope issues when x \sim 0)
L <- 3
lines(c(-L, L) * cos(theta), c(-L, L) * sin(theta), lty = 3)
# Annotate R
text(x, y, labels = "(X,Y)", pos = 4)
text(x/2, y/2, labels = expression(R), pos = 2)
# Counter-clockwise arc from 0 to theta_ccw
arc_r \leftarrow max(0.8, min(1.2, 0.8 * r)) # keep the arc visible
arc_t <- seq(0, theta_ccw, length.out = 200)</pre>
lines(arc_r * cos(arc_t), arc_r * sin(arc_t), col = "darkgreen", lwd = 2)
# Angle label at midpoint of the arc
mid_t <- theta_ccw / 2
text(arc_r * cos(mid_t), arc_r * sin(mid_t), labels = expression(theta),
     col = "darkgreen", pos = 3)
```

Euclidean to Polar Coordinates (CCW angle)

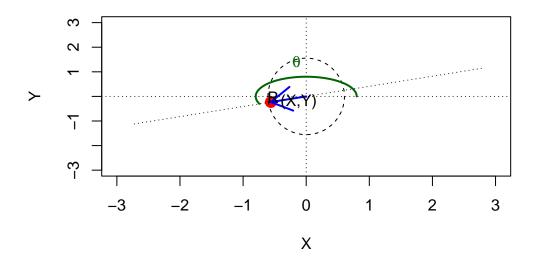


Figure 1: Euclidean point and its polar representation

This plot shows:

- (X,Y) as the red dot in Euclidean space.
- \bullet R as the radius of the dashed circle.
- Θ measured **counter-clockwise** from the positive X-axis, indicated by the green arc.
- Dashed lines through the origin along the axes and through (X,Y).

This plot shows:

- (X,Y) as the red dot in Euclidean space.
- R as the radius of the dashed circle.
- Θ measured counter-clockwise from the positive X-axis, indicated by the green arc.
- Dashed lines through the origin along the X-axis and through (X,Y).

Box-Muller Method

Generate standard normal random values (X,Y) from independent uniforms (U_1,U_2) .

- 1. Generate $U_1, U_2 \stackrel{\text{iid}}{\sim} \text{Unif}(0, 1)$.
- 2. $-2 \log U_1 \sim \operatorname{Exp}(\frac{1}{2})$ and $2\pi U_2 \sim \operatorname{Unif}(0, 2\pi)$.
- 3. Set $X=\sqrt{-2\log U_1}\cos(2\pi U_2)$ and $Y=\sqrt{-2\log U_1}\sin(2\pi U_2)$, which yields $X\sim\mathcal{N}(0,1)$ and $Y\sim\mathcal{N}(0,1)$.

R Implementation

```
set.seed(42)

# Box-Muller generator: returns n pairs (X, Y)
box_muller <- function(n) {
    u1 <- runif(n)
    u2 <- runif(n)
    r <- sqrt(-2 * log(u1))
    theta <- 2 * pi * u2
    x <- r * cos(theta)
    y <- r * sin(theta)
    data.frame(x = x, y = y)
}

# Example: draw 10,000 samples and check moments
samples <- box_muller(10000)
c(mean_x = mean(samples$x), var_x = var(samples$x),
    mean_y = mean(samples$y), var_y = var(samples$y))</pre>
```

mean_x var_x mean_y var_y 0.0005101192 1.0244204655 0.0006820139 0.9999651650

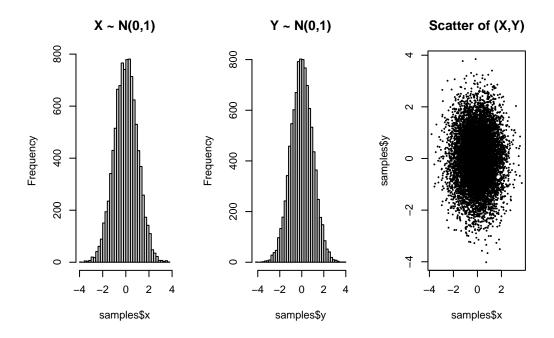


Figure 2: Diagnostics for Box–Muller samples

$$par(mfrow = c(1, 1))$$

Notes: The derivations above follow the change-of-variables formula with the polar transformation, showing that R is Rayleigh and Θ is Uniform, which leads directly to the Box–Muller algorithm.

Derivation of the Rayleigh Distribution

1. From Uniform to Exponential via the Inverse CDF Method

Let $U \sim \text{Unif}(0,1)$. To generate an exponential random variable T with rate $\lambda = \frac{1}{2}$ (mean 2), we use the Inverse CDF Method.

The CDF of
$$\operatorname{Exp}(\frac{1}{2})$$
 is

$$F_T(t)=1-e^{-t/2},\quad t\geq 0.$$

Set $F_T(t) = U$ and solve for t:

$$U=1-e^{-t/2}$$

$$e^{-t/2} = 1 - U$$

$$-\tfrac{t}{2} = \ln(1-U)$$

$$t = -2 \ln(1 - U)$$
.

Since $1 - U \sim \text{Unif}(0, 1)$ as well, we can equivalently write

$$t = -2 \ln U$$
.

Thus

$$T = -2 \ln U \sim \operatorname{Exp}(1/2).$$

2. From Exponential to Rayleigh

We want R such that $R^2 \sim \text{Exp}(\frac{1}{2})$.

That is, if $T \sim \text{Exp}(1/2)$ then $R = \sqrt{T}$ is Rayleigh distributed.

The CDF of R is

$$F_R(r) = P(R \le r) = P(\sqrt{T} \le r) = P(T \le r^2).$$

Because $T \sim \text{Exp}(1/2)$,

$$F_T(t) = 1 - e^{-t/2}$$
.

So

$$F_R(r) = F_T(r^2) = 1 - e^{-r^2/2}, \quad r \geq 0.$$

Differentiating gives the Rayleigh PDF:

$$f_R(r)=\frac{d}{dr}F_R(r)=re^{-r^2/2},\quad r\geq 0.$$

3. Inverse CDF Check for Rayleigh

```
To generate R directly from U \sim \mathrm{Unif}(0,1): Set F_R(r) = U: U = 1 - e^{-r^2/2} e^{-r^2/2} = 1 - U r^2 = -2 \ln(1-U) r = \sqrt{-2 \ln(1-U)}. Since 1 - U \sim \mathrm{Unif}(0,1), we can write r = \sqrt{-2 \ln U}, which matches the Box–Muller derivation.
```

R Implementation

```
# Generate Rayleigh samples using inverse transform
rayleigh_inverse <- function(n) {</pre>
  u <- runif(n)
  r \leftarrow sqrt(-2 * log(u))
  r
}
# Check empirical vs theoretical mean
set.seed(123)
samples_r <- rayleigh_inverse(10000)</pre>
c(emp_mean = mean(samples_r), emp_var = var(samples_r),
  th_mean = sqrt(pi/2), th_var = (4 - pi)/2)
 emp_mean
             emp_var
                       th_mean
                                   th_var
1.2583035 0.4248272 1.2533141 0.4292037
```

```
hist(samples_r, breaks = 40, probability = TRUE,
    main = "Rayleigh(=1)", xlab = "r")
curve(x * exp(-x^2/2), from = 0, to = 5, add = TRUE, col = "red", lwd = 2)
```

Rayleigh(.=1)

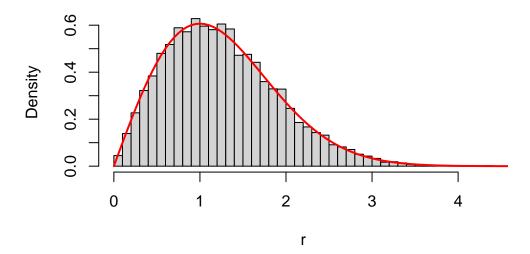


Figure 3: Plot generated by R code

Thus, the Rayleigh distribution naturally arises as the distribution of $R = \sqrt{-2 \ln U}$, completing the connection between uniforms, exponentials, and normals via the Box–Muller construction.

Deriving the Rayleigh via the Inverse CDF Method

1) From Uniform to $\operatorname{Exp}(\frac{1}{2})$

Let $U \sim \mathrm{Unif}(0,1)$. The target CDF for $T \sim \mathrm{Exp}(\frac{1}{2})$ is $F_T(t) = 1 - e^{-t/2}, \ t \ge 0$.

Set $U=F_T(T)$ and solve for T: $U=1-e^{-T/2}$ $e^{-T/2}=1-U$ $-\frac{T}{2}=\log(1-U)$ $T=-2\log(1-U)$.

Since $1 - U \stackrel{d}{=} U$ for $U \sim \text{Unif}(0,1)$, an equivalent generator is $T = -2 \log U$, which yields $T \sim \text{Exp}(\frac{1}{2})$.

2) From $\operatorname{Exp}(\frac{1}{2})$ to Rayleigh

Define the transformation $R = \sqrt{T}$.

For
$$r \ge 0$$
, $\mathbb{P}(R \le r) = \mathbb{P}(\sqrt{T} \le r) = \mathbb{P}(T \le r^2) = F_T(r^2) = 1 - e^{-r^2/2}$.

Thus the CDF of R is $F_R(r) = 1 - e^{-r^2/2}$, $r \ge 0$, and the PDF is $f_R(r) = \frac{d}{dr}F_R(r) = r e^{-r^2/2}$, $r \ge 0$, which is the Rayleigh distribution with parameter $\sigma = 1$.

3) Verifying via the Inverse CDF for Rayleigh

Start from $U \sim \text{Unif}(0,1)$ and set $U = F_R(R)$ with $F_R(r) = 1 - e^{-r^2/2}, r \ge 0$.

Solve for
$$R$$
: $U = 1 - e^{-R^2/2}$ $e^{-R^2/2} = 1 - U$ $-\frac{R^2}{2} = \log(1 - U)$ $R = \sqrt{-2 \log(1 - U)}$.

Again using $1 - U \stackrel{d}{=} U$, an equivalent generator is $R = \sqrt{-2 \log U}$.

Combining parts (1) and (2), if $T=-2\log U\sim \operatorname{Exp}(\frac{1}{2})$ and $R=\sqrt{T}$, then $F_R(r)=1-e^{-r^2/2}$ and $f_R(r)=r\,e^{-r^2/2}$, confirming that the transformation produces a Rayleigh random variable.

The Bivariate Normal Distribution

We introduce the general **bivariate normal** distribution with different means, variances, and correlation.

Notation: $BVN(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$.

1) Adding Means and Variances

Let the random vector be

$$\mathbf{Z} = \begin{bmatrix} X \\ Y \end{bmatrix}$$
.

We specify its mean vector as

$$\mu = \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix},$$

and its covariance matrix without correlation as

$$\Sigma_0 = \begin{bmatrix} \sigma_X^2 & 0\\ 0 & \sigma_Y^2 \end{bmatrix}.$$

Thus if $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$ independently, then

$$\mathbf{Z} \sim BVN(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, 0).$$

2) Adding Correlation ρ

To introduce correlation, the covariance matrix becomes

$$\Sigma = \begin{bmatrix} \sigma_X^2 & \rho \, \sigma_X \sigma_Y \\ \rho \, \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix}.$$

Thus the full distribution is

$$\mathbf{Z} \sim BVN(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho).$$

Its density is

$$f_{X,Y}(x,y) = \frac{1}{2\pi\,\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} - 2\rho\frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2}\right]\right).$$

In compact matrix notation, with

$$\Sigma^{-1} = \begin{bmatrix} 1/\sigma_X^2 & -\rho/(\sigma_X\sigma_Y) \\ -\rho/(\sigma_X\sigma_Y) & 1/\sigma_Y^2 \end{bmatrix} \cdot \frac{1}{1-\rho^2},$$

the density can be written as

$$f_{X,Y}(\mathbf{z}) = \frac{1}{2\pi \, |\Sigma|^{1/2}} \exp\!\left(-\tfrac{1}{2}(\mathbf{z}-\boldsymbol{\mu})^\top \Sigma^{-1}(\mathbf{z}-\boldsymbol{\mu})\right).$$

This general form compactly encodes the means, variances, and correlation structure of the bivariate normal distribution.

Bivariate Normal BVN $(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$

We derive the joint density in two steps: first with arbitrary means and variances (no correlation), then add correlation ρ using matrix notation.

1) Add means and variances (no correlation)

Let the random vector be $\mathbf{Z} = \begin{bmatrix} X \\ Y \end{bmatrix}$ with mean $\mu = \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}$ and covariance matrix $\Sigma_0 = \begin{bmatrix} \sigma_X^2 & 0 \\ 0 & \sigma_Y^2 \end{bmatrix}$.

Equivalently, $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ independently. The joint PDF factors: $f_{X,Y}(x,y) = \frac{1}{2\pi\,\sigma_X\,\sigma_Y} \exp\left\{-\frac{1}{2}\left[\frac{(x-\mu_X)^2}{\sigma_Y^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2}\right]\right\}.$

 $\begin{array}{ll} \text{In matrix notation, with } \mathbf{z} \ = \ \begin{bmatrix} x \\ y \end{bmatrix}, \ f_{X,Y}(\mathbf{z}) \ = \ \frac{1}{(2\pi)^1} \, \frac{1}{\sqrt{|\Sigma_0|}} \, \exp\Bigl\{ -\frac{1}{2} (\mathbf{z} - \boldsymbol{\mu})^\top \Sigma_0^{-1} (\mathbf{z} - \boldsymbol{\mu}) \Bigr\} \,, \\ \text{where } |\Sigma_0| = \sigma_X^2 \, \sigma_Y^2 \, \text{and} \, \Sigma_0^{-1} = \begin{bmatrix} 1/\sigma_X^2 & 0 \\ 0 & 1/\sigma_Y^2 \end{bmatrix}. \end{array}$

Thus $\mathbf{Z} \sim \text{BVN}(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, 0)$.

2) Add correlation ρ

Introduce covariance $\operatorname{Cov}(X,Y) = \rho \, \sigma_X \sigma_Y$ with $\rho \in (-1,1)$. The covariance matrix becomes $\Sigma = \begin{bmatrix} \sigma_X^2 & \rho \, \sigma_X \sigma_Y \\ \rho \, \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix}.$

Its determinant and inverse are $|\Sigma| = \sigma_X^2 \, \sigma_Y^2 \, (1-\rho^2)$

$$\Sigma^{-1} = \frac{1}{1-\rho^2} \begin{bmatrix} 1/\sigma_X^2 & -\rho/(\sigma_X\sigma_Y) \\ -\rho/(\sigma_X\sigma_Y) & 1/\sigma_Y^2 \end{bmatrix}.$$

The bivariate normal density with correlation ρ is

$$f_{X,Y}(x,y) = \frac{1}{2\pi\,\sigma_X\,\sigma_Y\,\sqrt{1-\rho^2}}\,\exp\!\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_X)^2}{\sigma_X^2} - 2\rho\,\frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2}\right]\right\}.$$

In compact matrix form, $f_{X,Y}(\mathbf{z}) = \frac{1}{(2\pi)^1} \frac{1}{\sqrt{|\Sigma|}} \exp\left\{-\frac{1}{2}(\mathbf{z}-\mu)^\top \Sigma^{-1}(\mathbf{z}-\mu)\right\}$.

Notes: 1) When $\rho = 0$, the off-diagonal terms vanish and the density reduces to the independent case above.

- 2) Existence requires $\sigma_X > 0$, $\sigma_Y > 0$, and $|\rho| < 1$ so that Σ is positive definite.
- 3) One can obtain **Z** by an affine transform of a standard normal $\mathbf{N} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_2)$ using a matrix square root (e.g., Cholesky): $\mathbf{Z} = \mu + \mathbf{L} \mathbf{N}$ with $\mathbf{L} \mathbf{L}^{\top} = \Sigma$.

Deriving the Bivariate Normal $BVN(\mu_X,\mu_Y,\sigma_X^2,\sigma_Y^2,\rho)$ via PDF Transformations

We use matrix notation. Let $\mathbf{z} = (z_1, z_2)^{\top}$ with $z_1, z_2 \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$ and joint PDF $f_{\mathbf{Z}}(\mathbf{z}) = \frac{1}{2\pi} \exp\left\{-\frac{1}{2}\,\mathbf{z}^{\top}\mathbf{z}\right\}$.

Define $\mu = (\mu_X, \mu_Y)^{\top}$ and $\mathbf{D} = \operatorname{diag}(\sigma_X, \sigma_Y)$.

1) Add Means and Variances (Independent Case)

Consider the affine map $\mathbf{x}_0 = \mu + \mathbf{D} \mathbf{z}$. Then $\mathbf{z} = \mathbf{D}^{-1}(\mathbf{x}_0 - \mu)$ and the Jacobian is $\left| \det \frac{\partial \mathbf{z}}{\partial \mathbf{x}_0} \right| = \left| \det \mathbf{D}^{-1} \right| = \frac{1}{\sigma_V \sigma_V}$.

By the PDF method, $f_{\mathbf{X}_0}(\mathbf{x}_0) = f_{\mathbf{Z}}(\mathbf{D}^{-1}(\mathbf{x}_0 - \mu)) \, \left| \det \mathbf{D}^{-1} \right|$.

$$\text{Therefore } f_{\mathbf{X}_0}(x_0,y_0) = \frac{1}{2\pi\,\sigma_X\sigma_Y}\,\exp\!\left\{-\frac{1}{2}\left[\left(\frac{x_0-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y_0-\mu_Y}{\sigma_Y}\right)^2\right]\right\},$$

which is the independent bivariate normal with means μ_X, μ_Y and variances σ_X^2, σ_Y^2 .

2) Add Correlation ρ (Keep Means and Variances)

Work with centered variables $\tilde{\mathbf{x}}_0 = \mathbf{x}_0 - \mu$ and construct $\tilde{\mathbf{x}} = \mathbf{C}\tilde{\mathbf{x}}_0$, where $\mathbf{C} = \begin{bmatrix} 1 & 0 \\ \rho \frac{\sigma_Y}{\sigma_Y} & \sqrt{1-\rho^2} \end{bmatrix}$.

Set the final variables as $\mathbf{x} = \mu + \tilde{\mathbf{x}} = \mu + \mathbf{C}(\mathbf{x}_0 - \mu)$.

The Jacobian of the map $\mathbf{x}_0 \mapsto \mathbf{x}$ equals $\left| \det \frac{\partial \mathbf{x}_0}{\partial \mathbf{x}} \right| = \left| \det \mathbf{C}^{-1} \right| = \frac{1}{\sqrt{1 - \rho^2}}$.

Using the PDF method again with translation invariance of the Jacobian, we obtain $f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{X}_0}(\mathbf{C}^{-1}(\mathbf{x} - \mu) + \mu) |\det \mathbf{C}^{-1}|$.

After algebra (or by composing the two linear maps on \mathbf{z}), the covariance of \mathbf{x} is $\Sigma = \begin{bmatrix} \sigma_X^2 & \rho \, \sigma_X \sigma_Y \\ \rho \, \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix}, \text{ and the joint PDF simplifies to the standard } BVN \text{ form } f_{X,Y}(x,y) = \frac{1}{2\pi \, \sigma_X \sigma_Y \sqrt{1-\rho^2}} \exp \left\{ -\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_X}{\sigma_X} \right)^2 - 2\rho \, \left(\frac{x-\mu_X}{\sigma_X} \right) \left(\frac{y-\mu_Y}{\sigma_V} \right) + \left(\frac{y-\mu_Y}{\sigma_V} \right)^2 \right] \right\}.$

Matrix Notation Summary

Let
$$\mu = (\mu_X, \mu_Y)^{\top}$$
 and $\Sigma = \begin{bmatrix} \sigma_X^2 & \rho \, \sigma_X \sigma_Y \\ \rho \, \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix}$. Then the density can be written compactly as $f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{2\pi\sqrt{\det\Sigma}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)^{\top}\Sigma^{-1}(\mathbf{x}-\mu)\right\}$, where $\det\Sigma = \sigma_X^2\sigma_Y^2(1-\rho^2)$ and $\Sigma^{-1} = \frac{1}{(1-\rho^2)\sigma_X^2\sigma_Y^2} \begin{bmatrix} \sigma_Y^2 & -\rho \, \sigma_X \sigma_Y \\ -\rho \, \sigma_X \sigma_Y & \sigma_X^2 \end{bmatrix}$.

The two-step construction explicitly shows how translation and diagonal scaling introduce means and variances (with Jacobian $|\det \mathbf{D}^{-1}|$), and how a subsequent shear/rotation \mathbf{C} introduces correlation (with Jacobian $|\det \mathbf{C}^{-1}|$), yielding the full $BVN(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$ density.