
Simulating Discrete Random Variables
Prof. Eric A. Suess

Binomial

One way to simulate a binomial random variable is to simulate the events of which it is
composed. If this binomial random variable has parameters 𝑛 and 𝑝, then we can independently
simulate n events, each with probability p of being a success. The number of successes, then,
would be the outcome of the binomial random variable. The code listed below uses this method
to create an integer valued function that returns the outcome of the random variable: (Note
that in this function and in all other code in this discussion the type extended is used. This
is a floating point variable type that is defined in Turbo Pascal. It has about 20 significant
digits and can range from 3.4 × 10−4932 to 1.1 × 104932. This provides for greater accuracy in
some of these applications; this is particularly necessary in the Poisson function on the next
page. I recommend that you take advantage of any high precision real types that your compiler
supports. In Fortran and C the type double carries about 16 significant digits.)

function binomial(n : integer; p : double): integer;

var i : integer;
successes : integer;

begin
successes := 0;
for i := 1 to n do
if random < p then inc(successes);

binomial := successes;
end;

1



Geometric

Here again we will use the method of simulating the events that make up the random variable.
For a geometric random variable with parameter p we simulate independent events, each with
probability 𝑝 of a success occurring, until we observe a success. The number of tries it takes
to get the first success is the outcome of the random variable.

function geometric(p : double): integer;

var i : integer;
success : boolean; (* becomes true if a success occurs *)

begin
success := false;
i := 0;
while not success do
begin
success := random < p;
i := i + 1;
end;

geometric := i;
end;

2



Poisson

The listing below is a function that will return the outcome of a poisson random variable with
parameter 𝜆. We will not be able to discuss the method used here until later in the course.

function poisson(lambda : double): longint;

var i : longint;
product : double;
compare : double;

begin
compare := exp(-lambda);
product := random;
i := 0;
while product > compare do
begin
product := product * random;
i := i + 1;

end;
poisson := i;
end;

3


	Binomial
	Geometric
	Poisson

