MNIST Using layer_dense network <- keras_model_sequential() %>% layer_dense(units = 512, activation = "relu", input_shape = c(28 * 28)) %>% layer_dense(units = 10, activation = "softmax") network %>% compile( optimizer = "rmsprop", loss = "categorical_crossentropy", metrics = c("accuracy") ) Using layer_cov_2d and layer_max_pooling library(keras) model <- keras_model_sequential() %>% layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input_shape = c(28, 28, 1)) %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") model <- model %>% layer_flatten() %>% layer_dense(units = 64, activation = "relu") %>% layer_dense(units = 10, activation = "softmax") model %>% compile( optimizer = "rmsprop", loss = "categorical_crossentropy", metrics = c("accuracy") ) model %>% fit( train_images, train_labels, epochs = 5, batch_size=64 ) model %>% evaluate(test_images, test_labels) Dogs vs Cats library(keras) model <- keras_model_sequential() %>% layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input_shape = c(150, 150, 3)) %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_flatten() %>% layer_dense(units = 512, activation = "relu") %>% layer_dense(units = 1, activation = "sigmoid")