Building a simple neural network using Keras and
Tensorflow

JSM 2018: Poster 181 - Classroom Demonstration: Deep Learning for Classification
and Regression, Introduction to GPU Computing

Eric A. Suess
Department Of Statistics and Biostatistics
CSU East Bay

eric.suess@csueastbay.edu

Thank you
A big thank you to Leon Jessen for posting his code on github.
Building a simple neural network using Keras and Tensorflow

I have forked his project on github and put his code into an R Notebook so we can
run it in class.

Motivation

The following is a minimal example for building your first simple artificial neural
network using Keras and TensorFlow for R.

TensorFlow for R by Rstudio lives here.

Gettings started - Install Keras and TensorFlow for R
You can install the Keras for R package from CRAN as follows:
install.packages("keras")

TensorFlow is the default backend engine. TensorFlow and Keras can be installed as
follows:

library(keras)
install_keras()

Naturally, we will also need TidyVerse:

https://github.com/leonjessen/keras_tensorflow_on_iris/blob/master/README.md
https://tensorflow.rstudio.com/keras/

Install from CRAN
install.packages("tidyverse")

Or the development version from GitHub
install.packages("devtools")
devtools::install_github("hadley/tidyverse")

Once installed, we simply load the libraries

library("keras")
suppressMessages(library("tidyverse"))

Artificial Neural Network Using the Iris Data Set
Right, let's get to it!
Data

The famous (Fisher's or Anderson's) iris data set contains a total of 150
observations of 4 input features Sepal.Length, Sepal.Width, Petal.Length and
Petal.Width and 3 output classes setosa versicolor and virginica, with 50
observations in each class. The distributions of the feature values looks like so:

iris %>% as_tibble %>% gather(feature, value, -Species) %>%
ggplot(aes(x = feature, y = value, fill = Species)) +
geom_violin(alpha = 0.5, scale = "width") +

theme_bw()
B_
) O
<> Species
@ setosa
= 4
] versicolor
virginica
IC
N L

PetalLength Petal Width Sepal.Length Sepal Width
feature

Our aim is to connect the 4 input features to the correct output class using an
artificial neural network. For this task, we have chosen the following simple
architecture with one input layer with 4 neurons (one for each feature), one hidden
layer with 4 neurons and one output layer with 3 neurons (one for each class), all
fully connected:

architecture_visualisation.png

Our artificial neural network will have a total of 35 parameters: 4 for each input
neuron connected to the hidden layer, plus an additional 4 for the associated first
bias neuron and 3 for each of the hidden neurons connected to the output layer, plus
an additional 3 for the associated second bias neuron.Le. 4-4+4+4-3+3=35

Prepare data

We start with slightly wrangling the iris data set by renaming and scaling the
features and converting character labels to numeric:

set.seed(265509)
nn_dat <- iris %>% as_tibble %>%
mutate(sepal_length = scale(Sepal.Length),
sepal_width = scale(Sepal.Width),
petal_length = scale(Petal.Length),
petal width = scale(Petal.Width),
class label = as.numeric(Species) - 1) %>%
select(sepal_length, sepal_width, petal_length, petal _width, class_label)

nn_dat %>% head(3)

Atibble: 3 x5
sepal_length sepal_width petal length petal width class_label

<dbl> <dbl> <dbl> <dbl> <dbl>
1 -0.898 1.02 -1.34 -1.31 0.
2 -1.14 -0.132 -1.34 -1.31 0.
3 -1.38 0.327 -1.39 -1.31 0.

Then, we create indices for splitting the iris data into a training and a test data set.
We set aside 20% of the data for testing:

test fraction <-0.20

n_total_samples <- nrow(nn_dat)

n_train_samples <- ceiling((1 - test_fraction) * n_total_samples)
train_indices <- sample(n_total samples, n_train_samples)
n_test samples <- n_total samples - n_train_samples

test indices <- setdiff(seq(l, n_train_samples), train_indices)

Based on the indices, we can now create training and test data

x_train <- nn_dat %=>% select(-class_label) %>% as.matrix %>% .
[train_indices,]

y train <- nn_dat %>% pull(class_label) %>% .[train_indices] %>%
to_categorical(3)

x_test <- nn_dat %>% select(-class_label) %>% as.matrix %>% .
[test indices,]

y_test <- nn_dat %>% pull(class_label) %=>% .[test_indices] %>%
to_categorical(3)

Set Architecture

With the data in place, we now set the architecture of our artificical neural network:

model <- keras_model _sequential()
model %>%

layer_dense(units = 4, activation = 'relu’, input_shape = 4) %>%

layer_dense(units = 3, activation = 'softmax’)
model %=>% summary
##
Layer (type) Output Shape Param
##
dense_1 (Dense) (None, 4) 20
##
dense_2 (Dense) (None, 3) 15

#H#

Total params: 35

#+# Trainable params: 35
Non-trainable params: 0
##

Next, the architecture set in the model needs to be compiled:

model %>% compile(
loss = 'categorical_crossentropy’,
optimizer = optimizer_rmsprop(),
metrics = c(‘accuracy')

)
Train the Artificial Neural Network

Lastly we fit the model and save the training progres in the history object:

history <- model %=>% fit(
x = x_train, y =y _train,
epochs = 200,
batch_size = 20,
validation_split = 0
)
plot(history) +
ggtitle("Training a neural network based classifier on the iris data set") +
theme_bw()

Training a neural network based classlfier on the Irl:

0.8 9

acc

0.6 1

0.4

value

0.9 4

loss

0.6~

0.3 1

0 50 100 150 200
epoch

Evaluate Network Performance

The final performance can be obtained like so:

perf <- model %>% evaluate(x_test, y test)
print(perf)

#4# $loss

[1]1 0.1339914
#H#

$acc

#4# [1] 0.95

classes <- iris %>% as_tibble %>% pull(Species) %>% unique
y pred <- model %=>% predict classes(x_test)
y_true <-nn_dat %=>% pull(class_label) %>% .[test_indices]

tibble(y true = classes[y true + 1], y pred = classes[y pred + 1],
Correct = ifelse(y_true ==y pred, "Yes", "No") %>% factor) %>%
ggplot(aes(x =y _true, y =y pred, colour = Correct)) +
geom jitter() +
theme_bw() +
ggtitle(label = "Classification Performance of Artificial Neural Network",

subtitle = str_c("Accuracy = ",round(perf$acc,3)*100,"%")) +
xlab(label = "True iris class") +
ylab(label = "Predicted iris class")

Classlificatlon Performance of Artlficlal Neural Net
Accuracy = 95%

L]
virginica .
(7]
(7]
o
o . Correct
=
— L]
B versicolor - * . . & Mo
3] . ® Yeg
8
A i e
e W
setosa o
. s
. L]
sefosa versicolor virginica

True Iris class

library(gmodels)

CrossTable(y_pred, y_true,
prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE,
dnn = c('predicted', 'actual'))

##
##
Cell Contents

S |

##

Total Observations in Table: 20

##

##

| actual

predicted | 0] 1] 2 | Row Total |
#HH —oooomooae |- |- |- |--mmmeee |

0| 12 | 0| 0

| 1.000| 0.000| O
#HH —ooooooae |- |- |- |--mmmmeee |

1] 0| 5| 1] 6 |

| 0.000| 1.000| 0.333] |
#HH —oooomooae |- |- |- |- |

2 | 0| 0| 2 | 2 |

| 0.000| 0.000| 0.667 | |
HH oooooooae |- s |- e |

Column Total | 12 | 5] 3] 20 |
| 0.600| 0.250| 0.150 | |

Conclusion

I hope this illustrated just how easy it is to get started building artificial neural
network using Keras and TensorFlow in R. With relative ease, we created a 3-class
predictor with an accuracy of 100%. This was a basic minimal example. The network
can be expanded to create Deep Learning networks and also the entire TensorFlow
API is available.

Enjoy and Happy Learning!
Leon

Thanks again Leon, this was awsome!!!

	Thank you
	Motivation
	Gettings started - Install Keras and TensorFlow for R
	Artificial Neural Network Using the Iris Data Set
	Data
	Prepare data
	Set Architecture
	Train the Artificial Neural Network
	Evaluate Network Performance
	Conclusion

