
n-grams

Prof. Eric A. Suess

March 24, 2021



Relationships between words

Moving beyond word counts leads to using n-grams.

2-grams or bigrams can be used to examine which words tend to
follow other words.

bigrams can be used to see negation, for example, the use of the
word not before another word, such as happy. Only using word
counts can miss the negation, such as not happy, in sentiment
analysis.



Tokenizing by n-grams

The unnets_tokens() function has an option token which change set
to “ngrams” with n = 2 to get bigrams.



Counting n-grams

The separate() and unite() functions can be very useful when
working with n-grams.

Now we need to filter out stop_words from two sets or words, the
first word and the second word in a bigram.



Analyzing bigrams

bigrams can be useful to analyze text data where one of the words
in the bigram is the same for the filter value. In the book the
authors look at Streets in Jane Austin’s books.

To do this we can filter on the second word of the bigram “street”.



TF-IDF

The td-idf values can be computed for bigrams also.



bigrams can give context in sentiment analysis

A very useful application of bigrams is to look for negations in text
when performing Sentiment Analysis.

Example: The use of the word not before another word, such as
happy. Only using word counts can miss the negation, such as not
happy, in sentiment analysis.



bigrams can give context in sentiment analysis

bigrams can be used to locate words that should have the opposite
sentiment score.

In the book the AFINN lexicon is used in the example given, this
lexion give numeric sentiment values, with positive and negative
numbers.



bigrams can give context in sentiment analysis

The example creates

> negation_words <- c("not", "no", "never", "without")

and used this like the stop_words


