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Motivation

▶ President Trump’s Rose Garden Event for Supreme Court
nominee Amy Coney Barrett, Sept. 26, 2020

▶ The Rose Garden event:
1. Approximately 300 attendees

2. Every guest tested negative, no social distancing

3. Multiple, subsequent, coronavirus cases

▶ After the event numerous people tested positive. How can we
explain this?

1. There is a difference between testing positive and someone
“truly” having the disease, D = 1

2. Diagnostic tests are imperfect



Implementation

▶ Built a Bayesian hierarchical model to estimate the number of
people who would have tested positive after each event and
over all the events.

▶ Posterior estimation:
1. MCMC algorithm: Gibbs Sampler.

▶ R packages:
1. rjags

2. runjags



Application

▶ Our model is based on the test results of the individuals
attending. We do not have these data. The data was
simulated using reasonable values for the prevalence of the
disease, sensitivity and specificity of the tests for each event.

▶ To apply our model, we:
1. Collected data on 73 different Trump events (including the

Rose Garden event, 9/26/20)
2. Simulated the number of positive results for each event

▶ Generated posterior distributions for the model parameters.

▶ Generated posterior predictive distributions using the
simulated data.



President Trump’s superspreader events

▶ From news reports we found 70 such events.
summary(covid19trump[, 1:2])

## Event_Type Number_of_Participants
## Party : 6 Min. : 110
## Rally :13 1st Qu.: 1200
## Airport:54 Median : 5000
## Mean : 6117
## 3rd Qu.: 7000
## Max. :30000



Simulating the Number of Positive Cases

▶ To simulate the number of positive cases:
1. Gave each event its own randomly determined probability of

testing positive from a beta distribution
2. Used each individual event’s probability of testing positive and

size, to randomly generate the number of people who would
have tested positive



Simulating the Number of Positive Cases

k <- nrow(na.omit(covid19trump)) # Number of Events

omega <- 0.05 # Mode of the beta Prior

kappa <- 100 # Concentration for beta Prior

prob_nu <- rbeta(k, omega*(kappa - 2) + 1,
(1 - omega)*(kappa - 2) + 1) # P(+)

# Loading different event sizes
n <- na.omit(covid19trump$Number_of_Participants)



Simulating the Number of Positive Cases
head(covid19trump[,1:2])

## Event_Type Number_of_Participants
## 1 Party 500
## 2 Party 300
## 3 Party 400
## 4 Party 900
## 5 Party 1500
## 6 Party 300

# Simulating the number of positive cases
positive_cases_sim <- function(x){

rbinom(1,x, prob_nu)
}
positive_cases_sim(covid19trump$Number_of_Participants[1])

## [1] 23



What is the Model?

Figure 1: Model Diagram



What is the Model?

- yi = The number of people who have tested
positive for coronavirus, at each event, i.

- yi was modeled using a binomial distribution:

yi ∼ binomial(νi , Ntotali)



What is the Model?

- η = The sensitivity of the coronavirus tests
used.

η = P(+|D)

- θ = The specificity of the coronavirus tests
used.

θ = P(−|Dc)

- priors
η ∼ beta(910, 90)

θ ∼ beta(950, 50)



What is the Model?

- πi = The true prevalence of the coronavirus
at each event, i.

πi = P(D|ω, κ)

πi ∼ beta(ω ∗ (κ − 2) + 1, (1 − ω) ∗ (κ − 2) + 1)



What is the Model?

- νi = The probability of testing positive for
coronavirus, at each event, i.

νi = P(+|η, θ, πi) = ηπi + (1 − θ)(1 − πi)

- For the simulated data, we set η = θ = 0.95

- Ntotali = The number of participants at
each event, i.
- Note: The parameter νi dependes on η and
θ



What is the Model?

- ω = The mode of the beta prior distribution
put upon the prevalence of the coronavirus.

- ω is used in the model for an alternative
parameterization of the beta distribution,
rather than use of β or α.

- prior:

ω ∼ beta(6, 95)



What is the Model?

- κ = The concentration of the beta prior
distribution put upon the prevalence of the
coronavirus.

- κ is used in the model for an alternative
parameterization of the beta distribution as
well.

κ = (κ − 2) + 2

- prior:

κ − 2 ∼ gamma(5.8, 0.48)



Posterior Predictive Distributions

▶ Pyi = The posterior, predictive distribution for the number of
people who tested positive for coronavirus, at each event, i.

Pyi ∼ binomial(νi , Ntotali)

▶ Pytot = The posterior, predictive distribution for the total
number of people who tested positive for coronavirus
throughout all the events.

Pytot =
N∑

i=1
Pyi

▶ While everyone who attended the Rose Garden event tested
negative, because of the imperfect diagnostic test used there
were some people with a false negative test results.



Model Limitations

▶ Assumes that the same test was used for every event.

▶ Assumes that the underlying prevalence distribution for the
coronavirus is the same for every event.



Implementation: JAGS code
modelString <- "
model {

for (i in 1:k){
y[i] ~ dbin( nu[i], Ntotal[i] )
nu[i] = eta*pi[i] + (1 - theta)*(1 - pi[i])
pi[i] ~ dbeta( omega*(kappa - 2) + 1,
(1 - omega)*(kappa - 2) + 1 )
Py[i] ~ dbin( nu[i], Ntotal[i] )

}
omega ~ dbeta( 6, 95)
kappa = kappaMinusTwo + 2
kappaMinusTwo ~ dgamma( 5.8, .48 )
eta ~ dbeta( 910, 90 )
theta ~ dbeta( 950, 50 )
Py_tot = sum(Py)

}
"



Posterior Estimates
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Figure 2: Density Plot of Pytot



Posterior Estimates
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11, 227 ≤ mode(Pytot) ≤ 11, 816

▶ The gold bar in the plot, represents the 95% Highest Density
Interval (HDI) for the Mode of Pytot .

▶ The HDI indicates a 95% probability that mode(Pytot) would
fall in between 11,227 and 11,816.



Posterior Estimates
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Figure 3: Density Plot(s) of Pyi



Posterior Estimates
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6 ≤ mode(Py1) ≤ 24
2 ≤ mode(Py2) ≤ 15
4 ≤ mode(Py3) ≤ 17
17 ≤ mode(Py4) ≤ 18
12 ≤ mode(Py5) ≤ 33
24 ≤ mode(Py6) ≤ 55
128 ≤ mode(Py7) ≤ 195

▶ The blue bar in the plot represents the 95% HDI for the mode
of Pyi .

▶ The variability in Pyi between the different events is evident
in the plot above.



Posterior Estimates
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Figure 4: Density Plot(s) of πi



Posterior Estimates
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▶ 0.00000842 ≤ mode(π1) ≤ 0.0225
▶ 0.00000220 ≤ mode(π2) ≤ 0.0230
▶ 0.000000563 ≤ mode(π3) ≤ 0.0119
▶ 0.00000180 ≤ mode(π4) ≤ 0.0114
▶ 0.00000125 ≤ mode(π5) ≤ 0.0132
▶ 0.000000919 ≤ mode(π6) ≤ 0.0209
▶ 0.000641 ≤ mode(π7) ≤ 0.00939

▶ The blue bar in the plot represents the 95% HDI for the mode
of πi

▶ Posterior estimates for event prevalences appear to remain
consistent with the (simulated) data.



Posterior Estimates
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Figure 5: Density Plot of νi and πi by Event



Posterior Estimates
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▶ 0.0214 ≤ mode(ν1) ≤ 0.0418
▶ 0.0209 ≤ mode(ν2) ≤ 0.0423
▶ 0.020 ≤ mode(ν3) ≤ 0.0324
▶ 0.0320 ≤ mode(ν4) ≤ 0.0320
▶ 0.0336 ≤ mode(ν5) ≤ 0.0336
▶ 0.0209 ≤ mode(ν6) ≤ 0.0404

▶ As evident from the plot, one’s chance of testing positive is
greater than the chance of actually having the coronavirus.

▶ The coronavirus tests are imperfect!



Posterior Estimates
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Figure 6: Density Plot of η



Posterior Estimates
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▶ 0.887 ≤ mode(η) ≤ 0.924

▶ The gold bar represents the 95% HDI for the mode of η.
▶ As shown in the posterior distribution, the sensitivity for this

test was not perfect.
▶ It’s 95% likely that upwards of 11% of tests were false

negatives.



Posterior Estimates
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Figure 7: Density Plot of θ



Posterior Estimates
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▶ 0.977 ≤ mode(θ) ≤ 0.980

▶ The gold bar represents a 95% HDI for the mode of θ.
▶ Specificity yielded slightly better results than sensitivity.
▶ It is 95% likely that 3% of tests were false positives.



Results

▶ Tests were prone to incorrect results, both false positive and
false negative.

▶ At the Rose Garden event people who tested positive were
refused entry, but for all of the other events no tests were
required for entry. So if the tests were done, some people
entering would have had false positive and some would have
false negative results.



Diagnostics

▶ To ensure that all the MCMC samples had properly converged,
we made use trace plots, and used the Gelman-Rubin Statistic.



Diagnostics
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Figure 8: Trace Plot for Pytot

▶ As evident from the trace plot, all the chains have seemingly
converged.



Diagnostics
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Figure 9: Trace Plots for Py1 → Py6

▶ While there were too many individual events to plot all of the
trace plots on the same page, the first six trace plots for Pyi
serve as a good representation for the convergence of the
chains.



Diagnostics
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Figure 10: Trace Plots for π1 → π6

▶ As evident from the trace plots, the estimates for the
distribution of πi have seemingly converged as well.



Diagnostics
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Figure 11: Trace Plots for ν1 → ν6

▶ As evident from the trace plot, the estimates for the
distribution of νi have seemingly converged as well.



Diagnostics
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Figure 12: Trace Plot for η
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Figure 13: Trace Plot for θ

▶ As evident from the trace plots, the chains seem to have
successfully converged.



Gelman-Rubin Statistic

▶ What is the Gelman-Rubin statistic?
▶ Ratio of variance between MCMC chains vs. within MCMC

chains
▶ Can think of as a sort of ANOVA F-test
▶ Ideally, we would like the Gelman-Rubin statistic to be around

1 (insignificant)



Gelman-Rubin Statistic

Table 1: Gelman-Rubin Statistics: nui

Point.Estimate Upper.C.I. Parameter
1.0002710 1.0006836 nu[1]
1.0001850 1.0005888 nu[2]
0.9999339 1.0000705 nu[3]
0.9999448 1.0000976 nu[4]
0.9999364 0.9999446 nu[5]
0.9998892 0.9999507 nu[6]

▶ Gelman-Rubin statistics appear to be around 1 - further
suggesting convergence of chains.



Gelman-Rubin Statistic

Table 2: Gelman-Rubin Statistics: Py and Pytot

Point.Estimate Upper.C.I. Parameter
1.0002989 1.0010359 Py_tot
0.9999381 0.9999539 Py[1]
1.0000482 1.0002504 Py[2]
0.9999843 1.0002102 Py[3]
1.0001271 1.0006467 Py[4]
0.9999690 1.0001508 Py[5]
1.0000572 1.0002924 Py[6]

▶ Gelman-Rubin statistics appear to be around 1 - implying that
the estimates for the distribution of Pyi and Pytot have
converged.



Gelman-Rubin Statistic

Table 3: Gelman-Rubin Statistics: pii

Point.Estimate Upper.C.I. Parameter
74 1.0003948 1.0008883 pi[1]
75 1.0002639 1.0007004 pi[2]
76 0.9999439 0.9999921 pi[3]
77 0.9999727 1.0001051 pi[4]
78 1.0004034 1.0005236 pi[5]
79 0.9999937 1.0001293 pi[6]

▶ Gelman-Rubin statistics are around 1 - implying an
insignificant different between the chains - therefore, implying
that the chains have converged.



Gelman-Rubin Statistic

Table 4: Gelman-Rubin Statistics: Eta, Theta, Omega, and Kappa

Point.Estimate Upper.C.I. Parameter

0.9999705 1.000109 omega
0.9999903 1.000106 kappa
1.0002021 1.000831 eta
1.0002289 1.000769 theta

▶ The Gelman-Rubin statistics for ω, κ, η, and θ imply that the
estimates for the respective posterior distributions have
converged.



Conclusion

▶ Through this model, we were able to:
1. Estimate the total number of people who would have tested

positive for coronavirus at each of former President Trump’s
events in 2020.

2. Estimate the event specific coronavirus prevalence.

3. Estimate the event specific chance of testing positive for
coronavirus.

4. Estimate the sensitivity and specificity of the tests used for the
events

5. Determine the Rose Garden as a unique event – in that all
participants tested negative, but resulted in multiple
coronavirus cases (due to testing imperfections).
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