
Deep Learning with Keras, Tensorflow and Statistical
Programming Language, R
Spring 2018 - Gui Larangeira, M.S. Computational Statistics. Mentor: Dr. Eric Suess,
1. Case Study: The MNIST database comprises 60,000 training examples

and 10,000 test examples of the handwritten digits 0–9, formatted as
28x28-pixel matrices, with each pixel carrying a grayscale value 0-255:

2. Building a handwritten digit classifier in R:
Open-source numerical libraries such as Keras and Tensorflow are
now available in the R programming language environment. We show
a well-known image recognition application for the MNIST database
using the Keras library in R.

Training

Data

Predictions
Y’

Ground
truth Y

Loss
Function

Test
Data

Training
Loss Score

Optimi-
zer

Training/Learning Test/Evaluation

Layers
Layers

LayersWeights

Input Model

Model

Predictions
Y’

Testing
Accuracy

Iteration

3. The Statistical Machine
Learning workflow:

a) Data representation and pre-
processing: Preprocess data
into chosen representation
and divide data into training
and test datasets

b) Define a network
architecture, number of layers
and elements in each layer,
using Keras/TF modules

c) Adjust network configurations,
such as functions and learning
rates. Train the model on
training set

d) Evaluate model on the test set
and iterate back to c until
satisfied

4. The heart of the Network are the layers, comprised of linear
transformation and non-linear activation function:

5. The advantage of Keras/Tensorflow libraries is how easily one can define
the network architecture and how portable the code is between
platform, from powerful GPUs to mobile phones. The model above is
represented by

6. Explain what epochs, the training
loop and learning rate (steps) are in
 the illustration on each side

7. Ultimately, our model is able to
achieve an accuracy of ___% after
 ___seconds and of training

Library(keras)
network <-
keras_model_sequential() %>%
 layer_dense(units = 512,
activation = "relu",
input_shape = c(28 * 28)) %>%
 layer_dense(units = 10,
activation = "softmax")

�0
�1

�728

a0

�

a512

4

	Slide 1

