
Classroom Demonstrations of

Parallel Processing for Computational Statistics

Prof. Eric A. Suess

California State University, East Bay

JSM 2013



Abstract:

With the common availability of multicore and multiprocessor

computers, students of Statistics have the ability to run statistical

computations in parallel. Within R there are various packages to

implement parallel processing and there are some packages that have

built-in options to run in parallel.

We introduce parallel processing for the mean and standard deviation.

These examples show the idea of dividing the overall computation into

separate calculations that can be done in parallel. Other examples

include, running linear regression calculations in parallel, using the

option in the bootstrap command to run parallel bootstrap calculations,

and to run clustering in parallel.

To show the benefits parallel processing we examine the time taken to

perform the calculations. Not all statistical calculations benefit from

parallel processing, but many do.



Introduction:

We became interested in the use of parallel computation (distributed

computing) and to a lesser extent in the use of parallel data storage

(distributed data storage) during the excitement of the NetFlix

competition that was offered a few years ago (2009). Learning that the

winners of the competition used amazon’s EC2 cluster and S4 storage

inspired us to investiage and learn about these new computing

environments, now referred to as ”cloud computing”. The Heritage

Health Data competition was also very exciting (2012). And now with

kaggle, being a location on the Internet for these types of competitions,

there are current open data analysis competitions posted regularly.

Many of the kaggle completions focus on Large Data problems which

benefit from the use of parallel computation.



These kinds of computing techniques and facilities currently seem far

from the introductory course work in Statistics at all levels, lower

division and upper division Statistics courses, and first year graduate

courses in Statistics. However, with some effort to motivate the idea of

parallel computing at earlier stages in Statistics Education would be very

helpful, then covering practical applications of parallel computation

earlier in the undergraduate curriculum and Master’s level curriculum

could be very exciting to students.



Why is parallel computation not being discussed earlier in

Statistics?

This is an important question! My opinion is that because the data

problems introduced in Statistics courses at all levels usually include

small and moderate sized data sets, therefore the use of parallel

computing is mostly counter productive. While this is true, the

opportunity to interduce some of the fundamental computing ideas is

missed and the opportunity to engage students early about a direct

connection to parallel computing, that is very common in the student’s

daily life, is missed. It also misses the opportunity to build a strong

foundation in computing earlier in Statistics majors. Finally, it also

misses an excellent opportunity for Statistics students to collect real data

about there own computing. All of these issues relate to the larger

emerging field of Analytics.



In the end, ...

Students of Statistics need to become much more capable and

knowledgeable users of their own computers, which are now all

inherently capable of parallel computation (Core2Duo, iCore3, iCore5,

iCore7, 2, 4, 8 cores respectively, for example). Statistics educators

should try to incorporate more use of these advanced computing devices

in a way that better reflects the advanced applications for data analysis

that have developed recently.



What is parallel computation and distributed computing?

The idea of parallel computing is that parts of an overall calculation can

take place simultaneously, hence in parallel.

A student might ask, “What is the multicore processor in my computer

useful for?”

The answer in a Statistics class hopefully will be, “For computing with

data.” This answer could be followed by a simple example of computing

a sum (or mean) in parallel.



Parallel processing in R

Most of the data sets used in Statistics are small and most of the

software used is not natively able to parallel process. The clear benefit is

not there at the early levels of statistics.

R does not have native parallel processing built-in. However, like

everything in R, there is a library (I should say libraries) for parallel

computing. In R it has become much easier to introduce the ideas of

parallel computation with the parallel and also multicore libraries.

Others are snow, snowfall, SPRINT, etc.



R for and apply()

To perform parallel computations one needs to understand the basic for

loop. This is the most basic computer programming structure to repeat

a calculation a fixed number of times. In R the for loop is easily

implemented. However, the for loop is not efficient in R and the

apply() function is usually recommended for use if possible. There are

many variations on the apply() function available in R.

The apply function applies a function to different parts of an overall

structure. For example, the sum() function can be used with the

apply() function to compute the row or column totals of a matrix. In

the various libraries in R for parallel computation there are variations on

the apply() function, such as parApply().



What is a cluster and how to start a cluster on a multicore

computer?

I am not an expert in clusters or super computing, but here goes, to the

best of my knowledge. The idea of a cluster is that of a collection of

usually identical computers connected together for the purpose of

running computers programs so that parts of the computations can be

done simultaneously.

Computers connected together allow for what is called parallel

processing. In the past computer chips only had single processing

capability, so connecting two or more single processing computers

allowed for parallel processing. The advantage with parallel processing is

that more computation can be done at the same time, leading to a time

savings. This should lead to more efficient computing, however

communication times are much slower over network connections, which

are used to connect the computers, that internal connections within a

single computer.



Parallel processing is more effective for larger computing problems.

There are potentially larger time improvements that can be achieved in

these situations. Parallel processing can lead to less efficiencies in smaller

computational problems, in these situations the communication times

may increase the overall time to complete the computations. Hence,

there is a need for monitoring the system times to make sure using a

cluster of computers is worthwhile.

Currently multicore computers are common. With the slowdown of the

advancement of processor speed improvements, computer chips are now

designed with multiple processor cores on single chips. This effectively

gives a multicore processor the ability to run multiple computing tasks

at the same time. So a multicore computer has the capability of parallel

processing within a single computer without the need for network

connected computers in a cluster. It is this setting that we approach the

issue of parallel processing in the classroom.



R code to start a cluster

library(parallel)

detectCores()

cl = makeCluster(2)

do.call("rbind",clusterCall(cl,function(cl)

Sys.info()["nodename"]))

stopCluster(cl)



Examples:

• Sum and Mean

• Matrix Multiplication

• Linear Regression, model fitting and verification

• Bootstrapping

• Clustering

• Bayesian MCMC



Sum:

The calculation of the sum of a list of numbers x1, x2, ..., xn. If

n = k ∗m, then the list of n numbers can be represented as k subsets of

m numbers. The calculation of the total can be represented as follows.

Sn =
n∑

i=1

xi (1)

=
k∑

j=1

m∑
i=1

xji (2)

= S1m + S2m + ...+ Skm (3)



Mean:

Exercise: How can the sample mean be computed in parallel?

Answer: Very clear what the answer is. However, it is very instructive.

Question: What other parallel computations could be possible?

Pooled Standard Deviation, ANOVA



R code for Sum:

x = c(1,12,23,34,45,56)

x.mat = matrix(x,3,2); x.mat

apply(x.mat, 2, sum)

sum(apply(x.mat, 2, sum))



R code for the parallel computation of the Sum:

library(parallel)

detectCores()

cl = makeCluster(2)

do.call("rbind",clusterCall(cl,function(cl)

Sys.info()["nodename"]))

# parallel apply

parApply(cl, x.mat, 2, sum)

sum(parApply(cl, x.mat, 2, sum))



R code for the parallel computation of Matrix

Multiplication:

A <- matrix(rnorm(1000000), 1000)

system.time(A %*% A)

library(snow)

cl = makeCluster(2)

do.call("rbind",clusterCall(cl,function(cl)

Sys.info()["nodename"]))

system.time(parMM(cl, A, A))

stopCluster(cl)



Linear Regression Simulation Study and Bootstrapping.

See Vinh Q. Nguyen’s 2009 presentation at Department of Statistics,

University of California, Irvine

Parallel Computing with R using snow and snowfall

www.ics.uci.edu/~vqnguyen/talks/ParallelComputingSeminaR.pdf

Very nice simulation study and Simple Linear Regression Bootstrap!

Checking the impact of violations of the assuming of normal errors.



Bootstrapping

library(boot)

boot(data, statistic, R, sim = "ordinary", stype = c("i", "f",

"w"), strata = rep(1,n), L = NULL, m = 0, weights = NULL,

ran.gen = function(d, p) d, mle = NULL, simple = FALSE, ...,

parallel = c("no", "multicore", "snow"),

ncpus = getOption("boot.ncpus", 1L), cl = NULL)



Bootstrapping

library(multicore)

system.time(sales.decline.boot <- boot(sales, decline.means,

R = 60000, stype="f",strata=sales[,2],

parallel = c("multicore"), ncpus = 2))



Bootstrapping

# Setup the cluster on 2 nodes with 6 cpus

library(Rmpi)

library(snow)

cl = makeCluster(6)

do.call("rbind",clusterCall(cl,function(cl)

Sys.info()["nodename"]))

library(rlecuyer)

clusterSetupRNG(cl)

clusterEvalQ(cl,library(boot))

system.time(sales.decline.boot <- boot(sales, decline.means,

R = 10000, stype="f",strata=sales[,2],

parallel = c("snow"), ncpus = 6, cl = cl))



Clustering:

Try Revolution Analytics R.

RevoScaleR package

rxKmeans

http://www.r-bloggers.com/k-means-clustering-on-big-data/



Bayesian MCMC:

BUGSparallel project



SAS:

OPTIONS THREADS=YES CPUCOUNT=2;



Conclusions:

• Open Question: Is it a good idea to incorporate an

introduction to parallel processing in an introductory Statistics

class for Computer Scientists?

• Think of a good answer for your students.

• Not hard to introduce parallel processing in R.

• Might be the idea that attracts students to Statistics

• Lots of good examples on the Internet. See google.

• Give Revolution Analytics R a try. Very good for big data.



References:

McCallum, Q. Ethan and Weston, Stephen (2012) Parallel R, Data

Analysis in a Distributed World. O’Reilly.


