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Abstract 
True coverage probabilities of several nominal 95% and 99% interval estimates of the Poisson mean are computed 
using elementary programs in R. Among the intervals considered are frequentist confidence intervals based on normal 
approximation and Bayesian posterior probability intervals resulting from a non-informative prior. 
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1. Introduction 
 
As a programming language, R is becoming increasingly popular. It is freely available and it provides broad variety of 
methods for statistical computations and representations. In addition, its libraries are expanding with contributions from 
researchers from all around the globe with new modules implementing most contemporary statistical theories and 
techniques. As a result it is crucial for students of Statistics to be familiar with programming practice in R and able to 
manipulate data using R.  
 
The goal of the project described in the article is to demonstrate: 
• Application of elementary data manipulation tools in R such as vector operations, random number generation and 

statistical simulation; 
• Construction of user-defined functions to apply repeatedly a designated set of operators and functions while 

preserving readability of programming code; 
• Illustrate the effectiveness and practicality of collaborative programming to upper-division and first-year graduate 

students.  
 
Among the topics included in this paper are: 
• Large sample theory for maximum likelihood estimation, 
• Bayesian inference, 
• Relationship between Poisson and χ2 distributions. 
• Samples of different sizes were examined. 
 
 
1.1 Poisson Distribution 
The Poisson frequency function with parameter λ (λ > 0) is P(X  = x) = e–λ λx / x!,  where x = 0, 1, 2, ....  The Poisson 
distribution is often used to model the occurrence of rare events in a given period of time or distance. The events may 
include: calls coming to a telephone system; radioactive particle emitted from radioactive source; cases of a rare non-
infectious disease, used to estimate its prevalence; birth defects and genetic mutations; car accidents and claims made to 
an insurance company; vehicles passing through a street, used for analysing traffic and setting switching time of the 
traffic lights [Rice, p.45]. 
 



 

1.2 Coverage of Interval Estimates 
After an appropriate distribution is chosen, its parameter needs to be estimated to make the model practicable; in the 
case of the Poisson distribution the parameter is its mean. Therefore, a sample from the population is necessary to 
suggest a range of values for the estimated parameter. Multiple methods were devised for deriving interval estimates 
with declared coverage for the parameter λ of Poisson distribution. With repeated execution of a specific procedure to 
obtain a confidence interval, the researcher’s expectation is to find the proportion of intervals that include the true value 
of λ, to be equal to the declared coverage. In Figure 1, the proportion of simulated 95% confidence intervals that contain 
true value of λ happens to be exactly 95/100. 
 

 
Figure 1. One hundred 95% confidence interval estimates of the parameter; 95 of which include true value. 

 
In an ideal world, the proportion would be always equal  the nominal coverage, but due to approximation, assumptions 
made, and variations in the conditions in which the experiment or sampling was done, the nominal coverage may not 
always be reached. In an attempt to explore the reliability of a method in terms of coverage, we performed repeated 
random sampling, and used R to construct confidence intervals for various values of λ. 
 
 

2. True Coverage of Confidence Intervals Constructed by Different Methods 
 
2.1 Large Sample Theory for Maximum Likelihood Estimation 
A confidence interval constructed using large sample theory has a distinct structure: the center of the interval is a point 
estimator, specifically maximum likelihood estimator (MLE), and limits of the interval are obtained using the 
asymptotic variance (AV) of the MLE. Therefore, the interval is presented as (MLE-AV; MLE+AV). 
 
2.1.1 Maximum Likelihood Estimator and its Asymptotic Variance 
When sampling from a Poisson distributed population, the number that makes the observed sample most likely to 
appear is the maximum likelihood estimator (MLE) of λ. The theoretical derivation of maximum likelihood estimator is 
described in [Rice, p.267], where the MLE of the parameter for Poisson distribution is simply the sample mean [p.268]: 
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)/1(λ̂ , where observations Xi are iid Poisson(λ). Since λ̂  is calculated from a random sample, it is 

also randomly distributed; its probability distribution is called the sampling distribution. Large sample theory asserts 
that, for large sample sizes, the sampling distribution of the maximum likelihood estimator is normal with the MLE as 
the mean, and AV as the variance. Accordingly, another name for large sample theory is normal approximation.  
 
After standardizing the normal sampling distribution, the interval appears as ,ˆ

2/ AVzαλ ± where zα/2 denotes the α/2 
quantile of the standard normal distribution, and AV is the asymptotic variance of the MLE of the Poisson parameter 
found as nXnnI //ˆ)ˆ(/1 == λλ  [Rice, p.282]. Hence, an approximate 100(1 – α)% confidence interval for λ is 

./2/ nXzX α±  A similar derivation was presented by [Brown] for the parameter of a Binomial distribution. 



 

 
2.1.2 Realization in R-environment 
To see how much coverage the interval estimate can attain, the calculation of its bounds was programmed and samples 
from Poisson population with specific parameter were simulated with an elementary program in R. A fragment of the 
programming code is displayed in Figure 2. In the program, repeated sampling for a specific value of λ is presented in 
the matrix X. Each row of this matrix contains one individual sample, and the number of columns is equal to the sample 
size. With the aid of matrix and vector operations available in R it is possible to avoid using loops, which often run very 
slowly in large-scale simulations. 
 

X = matrix(rpois(m*n, lambda), nrow = m, ncol = n, byrow = TRUE)  # m samples of size n from Poisson(lambda) 
x.bar = apply(X, 1, mean)     # m sample means 
m.err = qnorm(1-a1/2)*sqrt(x.bar/n)    # m margins of error 
lcl = x.bar - m.err;  lcl[lcl<0]=0     # m Lower Confidence Limits 
ucl = x.bar + m.err       # m Upper Confidence Limits 
cover = (lambda >= lcl) & (lambda <= ucl)    # Vector of 0s and 1s 

 
p.cov = mean(cover)      # Simulated coverage for specific lambda 
width = mean(ucl - lcl)     # Simulated interval width for specific lambda 

 
Figure 2. R code for calculating true coverage of interval estimate based on large sample theory. 

 
Large sample theory is expected to give reliable estimates on samples equal to or larger than 30. In Figure 3, simulated 
coverage of 95% confidence intervals for samples of 10, 30 and 50 observations are compared. As the plot illustrates, 
even a sample size larger than 30 does not guarantee the nominal coverage. Moreover, there were not any obvious 
distinctions in coverage found for different sample sizes. However, in general, larger samples produce shorter intervals 
for the normal approximation method. Another advantage of a large sample is that the true coverage of confidence 
intervals substantially becomes closer to the nominal coverage for small values of λ. Specifically, for values of λ in 
(0, 5] interval estimates based on the normal approximation performed noticeably better for sample size 50. Similar 
performance was noted for 99% intervals, for which it is worth mentioning that all provided at least 95% coverage. 
 

 
Figure 3. Simulated coverage of 95%  confidence intervals based on large sample theory for different sample sizes. 

 
2.2 Bayesian Estimation 
In Bayesian Estimation the researcher attempts to incorporate previous knowledge or expert opinion about a situation 
into the investigation. Technically, the unknown parameter, λ in the case, considered to be as a random variable having 
a distribution, which usually is called prior distribution. To decide on a distribution family for the prior, it is 
recommended to consider properties of the parameter of interest. For example, as a parameter of the Poisson 
distribution, λ can be any number on the positive axis. Hence, the prior distribution should be continuous and defined 
for positive values. In order to adequately incorporate expert knowledge and to achieve elegant mathematical 
manipulations, the prior distribution for λ is taken as gamma with parameters (α, β). Then, according to [Lee], the 
posterior distribution for λ is again gamma, except its parameters are a* = Σi Xi + α, and β* = n + β, where the sum is 
taken from 1 to n. After the posterior distribution is found, bounds of 95% the interval estimate are defined as .025- and 



 

.975-quantiles of gamma with parameters (α*, β*). More detailed information on Bayesian inference generally, and on 
choosing prior distribution for Poisson population in particular can be found in [Lee, p.87]. 
 
Regarding the prior distribution: by experimenting with various values for α and β, it is possible to put the desired 
probability on a specific range. Assume, that the expert considers that the most plausible values of λ are in the range 
(0, 20], then, our task is to fit a gamma distribution so that most of the probability is in interval (0, 20]. To investigate 
the effects of using various priors, several different ones were used in this project: 
• Almost flat prior Gamma(α = 1, β = .01) that puts about 60% of probability into the interval (0, 100), 
• Informative prior Gamma (α = 6.77, β = .58) for small values of λ with about 95% of probability in (0,20), 
• Informative prior Gamma(α = 84.21, β = 1.66) for larger values of λ with about 95% of probability in (40, 60). 
 
In Figure 4, all of these priors are plotted to illustrate the various probability allocations. All of them were found using 
the R code. 
 

 
Figure 4. Prior distributions used in Bayesian estimation of Poisson parameter. 

 
alpha.prior = 1; beta.prior = .01     # suggested parameters for prior Gamma distribution 
XMAT = matrix(rpois(m*n, lambda), nrow = m, ncol = n, byrow = TRUE) 
x.sum = apply(X, 1, sum)  
alpha.post = alpha.prior + x.sum; beta.post = beta.prior + n  # calculation of the parameters of posterior Gamma 
lambda.lo = qgamma(a1/2, shape = alpha.post, rate = beta.post)  # lower bound of the confidence interval 
lambda.up = qgamma(1-a1/2, shape = alpha.post, rate = beta.post)  # upper bound of the confidence interval 
p.cov.bay = mean((lambda >= lambda.lo) & (lambda <= lambda.up))  # check if lambda is in the interval 

 

Figure 5. R-code for computing Bayesian credible intervals for the Poisson parameter. 
 
During the iteration for each value of λ, repeated sampling of n observations from Poisson(λ) is simulated, parameters 
of the posterior gamma distribution are calculated, and the bounds of the interval estimate are evaluated. In Figure 5, 
R code for obtaining Bayesian interval estimates is displayed. 
 
Coverage of a Bayesian credible interval for each prior distribution was simulated as well as coverage of Normal 
approximation-based intervals. Surprisingly, true coverage that was the closest to nominal coverage was obtained with 
the almost non-informative prior Gamma(α = 1, β = .01).  Moreover, it is worth mentioning that the informative priors 
made it possible to reach the declared coverage and even surpass it, but only for the middle part of the targeted range 
and for small sample sizes as shown in Figure 6. Perhaps the performance of the informative prior for small values of λ 
can be improved by changing to a non-modal Gamma distribution with shape parameter 1. For the current analysis, a 
Gamma distribution with shape parameter 6.77 (and thus mode 10) was used as a prior distribution. 
 



 

 
Figure 6. Simulated coverage of Bayesian credible intervals for different prior distributions. The colors of the three 

curves correspond to colors of the density curves for the three prior distributions in Figure 5. 
 
Because the width of the interval is also an important attribute, expected widths of the intervals were also calculated. It 
is clear that the wider the interval the more chances for lambda to be inside the interval, but at the same time a wider 
interval provides less precise inference. Unlike the simulated expected width of normal confidence intervals, expected 
widths of Bayesian credible intervals was directly calculated. It is sufficient to know parameters of prior distribution, 
sample size, and sum of the observations to define the posterior distribution of λ. Then for each specific λ, specific prior 
and specific sample size, the problem of computing the expected width reduces to finding what would be the width of 
the interval for each possible sum of the observations, and probability to observe each sum given that population has 
Poisson distribution with specific λ. Luckily, sum of identical independently distributed Poisson random variables still 
has a Poisson distribution, except the parameter now equals λ times sample size. In addition, it is acceptable to set an 
upper bound for the sum variable since at certain values of sum, the probability of its appearing is so small that it does 
not affect the expected width by much. For example, the probability that a sum equalling 150 occurs with a distribution 
having parameter λ = 5 is 8.262944e–161, and thus, the range for calculating the expected width can be truncated to 
extend from 0 to 150 in this particular instance. R code for computing the expected width of a Bayesian credible interval 
for a Poisson parameter is shown in Figure 7. 
 
 h = lambda*n*3+1    # h diff values of possible observations; “+1” stands for all x's are zero 
 sumx = 0:(h-1)      # sumx is sum of n observations from Poisson 
 alpha = alpha.prior + sumx  # shape parameter for posterior Gamma 
 lo = qgamma(a1/2, shape = alpha, rate = beta.post) 
 up = qgamma(1-a1/2, shape = alpha, rate = beta.post) 
 width.x = up - lo    # width.x = width of the interval for each possible sum of observations 
 width.bay = sum(width.x*dpois(sumx[1:length(sumx)], lambda*n))   # width = expected width of the interval  
 

Figure 7. Fragment of the R-code for calculating expected width of Bayesian credible interval estimate. 
 
The expected widths of the intervals were obtained for estimates based on different priors, and widths are compared in 
Figure 8. Here we can see that, for small values of λ, an almost non-informative prior allowed us to get intervals that not 
only have better coverage, but also have shorter intervals. However, with a larger sample size the difference in width 
became negligible. For values of λ in a range from 40 to 60, an informative prior showed consistently narrower intervals 
than did our non-informative priors. 
 
2.3 Using the χ2 Distribution 
This section describes the calculation of coverage probabilities for interval estimates of the parameter of a Poisson 
distribution that are based on the χ2-distribution, as was first suggested by [Garwood]. Using the derivation in his paper 
and the fact that sum of independent identically distributed Poisson variables is still Poisson-distributed, but with 
parameter equal to the original parameter times sample size [Rice, p.159], bounds of a (1 – α)100% confidence interval 
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freedom, and α is chosen to designate a  (1 – α)100%  confidence interval.  



 

 
Figure 8. Plots demonstrating widths of the interval estimates based on informative and non-informative priors. 

 
Therefore, once the sample from the population is given, the bounds can be computed.  Table 1 presents calculated 
confidence interval bounds for sample of just 1 observation and sample of 10 observations.  Interestingly, width of the 
interval based on a sample of size 10 is 10 times shorter than based on sample of size 1, or in general, width of the 
confidence interval is inversely proportional to sample size, n, as well as for large sample-based intervals. 
 

Table 1: Calculated 95% confidence interval bounds and width for single observation and for sample of size 10 
n=1 n=10 Sum of 

observations Lower bound Upper bound Width Lower bound Upper bound Width 
0 0.0000 3.6889 3.6889 0.0000 0.3689 0.3689 
1 0.0253 5.5716 5.5463 0.0025 0.5572 0.5546 
2 0.2422 7.2247 6.9825 0.0242 0.7225 0.6982 
3 0.6187 8.7673 8.1486 0.0619 0.8767 0.8149 
4 1.0899 10.2416 9.1517 0.1090 1.0242 0.9152 
5 1.6235 11.6683 10.0448 0.1623 1.1668 1.0048 
6 2.2019 13.0595 10.8576 0.2202 1.3059 1.0858 
7 2.8144 14.4227 11.6083 0.2814 1.4423 1.1608 
8 3.4538 15.7632 12.3094 0.3454 1.5763 1.2309 
9 4.1154 17.0848 12.9694 0.4115 1.7085 1.2969 

10 4.7954 18.3904 13.5950 0.4795 1.8390 1.3595 
 
2.3.1 Probability that λ lies in the confidence interval 
Let us examine the 95% CIs for sample of size 10 in Table 1. As we see, values of both bounds are increasing as the 
observed sum increases. Consider a range (0, 0.3689] (where 0.3689 is the 1st upper bound). Then for any λ from this 
range there is no chance that the upper limit of a confidence interval will miss λ, because the lowest possible upper 
bound (0.3689) is still greater than (or equal to) λ. Now assume that 0.3689 < λ ≤ 0.5572; that is, the true value of λ is 
located between the 1st and 2nd upper bounds. Then the upper limit of an interval will miss λ only if all 10 observations 
in the obtained sample equal 0. Hence, the probability that λ is larger than upper bound of the interval equals probability 
of obtaining 10 zeroes from Poisson distribution where λ has a particular value from the interval (0.3689, 0.5572]. With 
analogous reasoning it is possible to get the probability of missing λ by upper bound for arbitrary range of λ. 
 
Now, let us consider lower limits for the same purpose. Assume that 0 ≤ λ < 0.0025 (between the 1st and 2nd lower 
bounds), then the only way to miss λ with the lower bound is to obtain at least one observation not equal to 0. That is, 
the probability of missing λ with the lower bound equals the probability of getting anything greater than 0 from Poisson 
distribution with parameter λn from interval [0, 0.0025n). With a similar argument we can obtain the probabilities of 
missing λ by lower bound for any range of λ.  
 



 

Finally, if λ is not in the interval, then either bound has missed it. Therefore, the probability of this event is the sum of 
probabilities of missing λ with the lower bound and missing λ with the upper bound for a particular value of λ; and the 
coverage probability sought is the compliment of the event of missing λ. Coverage probabilities of CIs constructed with 
the χ2-distribution for different sample sizes are demonstrated in Figure 9, where we also see that their coverage always 
is at least as good as the stated confidence level. 
 

 
Figure 9. Simulated coverage for confidence intervals based on χ2-distribution for samples of different sizes. 

 
 

 
3. Comparing Interval Estimates Constructed by Different Methods 

 
3.1 Comparing Expected Widths 
Now that we are aware of the true coverage of various intervals, it is time to take a look at their expected width. In 
Figure 10, variability of the widths of the intervals is readily seen to be a deviation from the width of the χ2-based 
interval, taken as a reference point. Therefore, if a curve on the plot goes higher then line y = 0, then the interval is 
shorter than the χ2-distribution-based interval. Moreover, the higher the curve on the plot, the shorter the interval 
represented by the curve. 
 
Based on the limited scope of our investigations of true coverage probabilities and expected widths of the intervals, the 
following recommendations seem reasonable: 
• For a small sample and small assumed values of λ it seems best to use the method based on the χ2-distribution, 

because of guaranteed coverage; fairly good coverage can be attained also by employing the Bayesian method, 
which gives shorter intervals than χ2-method; 

• For a small sample and large values of λ, the Bayesian method with an appropriate prior gives the narrowest 
intervals maintaining required coverage; 

• For a large sample and small values of λ, use the χ2-distribution to obtain at least the required coverage or a 
Bayesian interval estimate with reference to the appropriate informative prior for the narrowest intervals; 

• For a large sample and large values of λ, large-sample and Bayesian methods give close to the required coverage 
and short intervals. 

 
4. Conclusion 

 
The subject of this discussion originated from a class project in a graduate seminar on simulation given during summer 
2007, where an R program to compute coverage probabilities of confidence intervals for a parameter of a binomial 
distribution was demonstrated, based on [Brown, et al.]. Hopefully, the project will be helpful to future students for 
illustrating the concepts of interval estimation and of simulation with R. 
 



 

 
Figure 10. Difference in widths of CI’s constructed by different methods in comparison to width of an interval estimate 

based on the χ2-distribution. 
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