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1. Simulation in the Classroom 

The wide availability of ever faster computers and high quality, free software R has made feasible 
the use of meaningful simulations in upper-division probability courses. Depending on the level and 
interests of students, simulations can be intuition-building in-class demonstrations of basic 
principles or relatively simple programming projects, in which students are asked to make 
modifications in existing computer code.   

The programming necessary to reproduce results and figures in the Sections 2–6 of this paper 
(normality of the sample total, convergence of binomial to Poisson, distribution of the sum of a 
random number of random variables, and exponential distribution of interarrival times of a Poisson 
Process) is very elementary, so some explanation of how simulations can be programmed in R is 
possible even for students with no background in programming. Results in Section 7 (simulating 
M/M/s queues) require somewhat more advanced programming. Results are presented here in a style 
we hope can easily be modified for in-class demonstrations. Some sample code for Section 7 is 
shown in the Appendix.  

 

2. A Problem to Model: Fast Food Lunch 

Suppose historical data show that a carry-out fast-food “restaurant” in the center of a city serves 
about n = 225 people for lunch between noon and 1 p.m. each weekday, and that the bill for a 
randomly chosen customer averages µ = $5.00 with a standard deviation of σ = $1.20. So the 
average of daily lunchtime sales is about nµ = $1125.  
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However, on a particular day, the sales are only $1050. So the relatively new restaurant manager 
wonders whether something has gone wrong. Has some change prompted the customers to order 
less? Have the cashiers contrived to pocket some of the money without ringing up sales? If detailed 
historical data were available, we could just look back to see how frequently sales have been as low 
as $1050, but we only know the averages quoted above. 

 

2. A First Model: Sum of n Normal Bills 

We want to make a probability model to see whether $1050, which is $75 below average, is a 
suspiciously low figure. As a first model, we might say that the total of the sales on any one day is 
S = X1 + X2 + ... + X225. So E(S) = nµ = 225($5) = $1125, as mentioned above. Moreover, assuming 
independence among customers, SD(S) = σ√n = $18. If the bills of individual customers are 
normally distributed, then the total S is also normal, with  

P{S ≤ 1050} = P{Z ≤ –75/18 = –4.17} = 0.000015, 

where Z is standard normal. [In R, pnorm(1050, 1125, 18) returns 1.545430e–05.] The normal 
distribution is a fairly safe model here.  

According to the Central Limit Theorem, the sum S of such a large number of individual sales 
should be approximately normal, even if the individual sales are not normal. So, based on these 
preliminary computations, the lunchtime receipts of only $1050 for this particular day do seem 
suspiciously small. See Figure 1. 
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Figure 1. If S ~ NORM(1125, 18), then P{S ≤ 1050} is nearly 0, the area under the curve to the left of the 
vertical red line. 
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3. Modeling a Random Number of Customers 

The analysis of Section 2 assumes there are exactly 225 lunchtime customers every day. However, 
a more realistic model would take into account that the number of customers on a given day is also 
random. So let N be a random variable with E(N) = 225. Now the total of the receipts varies not 
only because each customer spends a random amount of money, but also because the number of 
customers is random. 

What is a reasonable distribution for N? Here is one approach. Suppose there are M = 22,500 
people in the downtown area each day who are potential customers. Also suppose that each of them 
has 1 chance in 100 of having lunch at our particular restaurant on a given day. Then the random 
number N of our actual customers is binomial with M = 22,500 trials and success probability  
p = 1/100. This gives E(N) = np = 225. The vertical green bars in Figure 2 show probabilities from 
this binomial distribution. 

Of course, the population size 22,500 and the success probability 1/100 are both only very rough 
guesses, but it turns out that any binomial random variable S based on a large population size M, a 
small success probability p, and mean E(S) = Mp = 225 has nearly the same distribution—the 
Poisson distribution with mean 225. Some values of this Poisson distribution are shown as small 
blue circles in Figure 2.  

Clearly, the distributions BINOM(22,500, 1/100) and POIS(225) are not much different. For a 
numerical comparison, Figure 3 shows some cumulative probabilities for the three random 
variables V1 ~ BINOM(22,500, .01), V2 ~ BINOM(45,000, .005), and  W ~ POIS(225). All three 
distributions have mean 225. Cumulative probabilities agree to two or three decimal places. 
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Figure 2.  Nearly equal distributions: Vertical bars show BINOM(22,500, 0.01) and blue circles  
show POIS(225). 
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           k   P{V1≤k}  P{V2≤k}  P{W≤k} 
———————————————————————————— 
200   0.048   0.049   0.049 
205   0.094   0.095   0.095 
210   0.166   0.166   0.167 
215   0.264   0.265   0.265 
220   0.385   0.386   0.386 
225   0.518   0.518   0.518 
230   0.647   0.647   0.647 
235   0.761   0.760   0.760 
240   0.850   0.850   0.849 
245   0.914   0.913   0.913 
250   0.954   0.954   0.954 

 

Figure 3.  Numerical illustration that binomial distributions with large M, small p, and Mp = 225 are 
nearly POIS(225). 
 

R code for making Figure 3 is essentially as follows: 

k = seq(200, 250, by=5) 
CDF1 = pbinom(k, 22500, .01) 
CDF2 = pbinom(k, 45000, .005) 
CDF3 = ppois(k, 225) 
round(cbind(k, CDF1, CDF2, CDF3), 3) 
 
More generally, POIS(225), the Poisson distribution with mean 225, is the limit of binomial 
distributions as M becomes infinite and p approaches 0 in such a way that Mp = 225 remains 
constant.  
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This illustrates that the details about M and p do not matter much as long as we believe that the 
number N of luncheon customers on a particular day results from a large number M of independent 
decisions, each with probability p of choosing to eat lunch at our restaurant. So we assume N ~ 
POIS(225). 

4. A Random Sum of Random Variables 

Now we investigate the model in which total lunchtime sales on a randomly chosen day is the sum 
of a random number N of random variables. S = X1 + X2 + ... + XN, where E(N) = 225 and Xi are 
distributed with mean $5.00 and standard deviation $1.20, and the Xi are independent of each other 
and of N. 

From arguments involving conditional probability, we have  

E(S) = E(N)E(X) = 225($5.00) = $1125 

as before. But now  

V(S) = E(N)V(X) + V(N)[E(X)]2 = 5949, so that SD(S) = $77.13. 

The formula for the mean and the first term in the formula for the variance are just as they would be 
if N were a constant value with V(N) = 0. The second term in the variance expresses the increased 
variability that comes from having a random number N rather than a fixed number n of 
customers.  

Taken alone, these results for the mean and standard deviation of total sales S say nothing about the 
probability P(S ≤ 1050). But, assuming N to be Poisson, and the Xi to be normal, we can get this 
probability from simulation.  
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Figure 4 shows the R code used in our simulation. In this code we assumed that N ~ POIS(225) and 
Xi ~ NORM(5, 1.20) and we simulated receipts for ten thousand lunch hours. The histogram in 
Figure 5 shows the simulated distribution of S. From this distribution we see that about 17% of the 
simulated daily receipts were $1050 or smaller. So while the day that raised the manager’s 
suspicions was certainly below average, it is not really a very unusual day when we take into account 
that the number of customers can vary randomly from one day to the next. 

 
mu.n = 225;  mu.x = 5;  sd.x = 1.2 
m = 10000;  s = numeric(m) 
for (i in 1:m)   
   { 
   n = rpois(1, mu.n) 
   s[i] = sum(rnorm(n, mu.x, sd.x))   
   } 
mean(s)  # simulated E(S) 
sd(s)    # simulated SD(S) 
mean(s <= 1050)  # simulated P{X ≤ 1050} 
hist(s, prob=T)  # histogram only 
 
Figure 4.  R code used to simulate P{S ≤ 1050} = 0.17 and make the histogram in Figure 5. On each of 
10,000 randomly chosen days, we first simulate the number N of customers, then their bills, and finally 
the total receipts for the day. 
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Figure 5.  Simulated histogram of S using normally distributed customer bills, compared with a normal 
curve based on the theoretical mean and standard deviation of S. The areas to the left of the vertical 
red line (in the histogram and under the curve) are both about 17%. 
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It is always well to validate a simulation to the extent possible. One run of our simulation gave  
E(S) ≈ 1124.67 and SD(S) ≈ $78.08, which are close to the theoretical values. Guessing that the 
resulting mixture of the 10,000 normal distributions might be approximately NORM(1125, 77.13), 
we superimposed this normal density on the histogram in Figure 5. If S has this normal distribution 
then P(S ≤ 1050) = 0.1654, so in this case a normal approximation based on the known mean and 
standard deviation gives serviceable results. 
 

5. A Discrete Model for Individual Purchases 

The manager thinks he might get a more realistic model by using information from a couple of days 
of register tapes on actual amounts of customer bills. Because of the prices charged for various 
luncheon items, suppose it turns out that almost all of the bills are in one of the amounts $3.18, 
$3.64, $4.33, $4.99, $6.03, or $7.50, and that these amounts occur roughly in the proportions 
10%, 10%, 20%, 30%, 20% and 10%, respectively. Accordingly, customer bills still have mean 
$5.00 and standard deviation $1.20. Of course, now the distribution is highly discrete instead of 
normal. But the theoretical values E(S) = $1125 and SD(S) = $77.13, which do not depend on the 
shape of the distribution of the Xi,  remain valid.  

Simulating ten thousand lunchtimes with this discrete model gives the approximate value  
P{S ≤ 1050} = 0.16%. Again here, values of E(S) and SD(S) are in good agreement with the 
theoretical values; our simulated results were 1125.85 and 76.47 respectively. Also, a histogram of 
the simulated distribution is difficult to distinguish from that of Figure 5. The only change in the R 
code for this simulation is to use the line 

s[i] = sum(sample(x, n, repl=T, prob=w)) 

inside the loop, where x is the vector of six prices and w is the vector of their relative frequencies. 
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6. Issues in Probability Modeling 

So far, we have had some reasonable success in modeling the distribution of total receipts S. With 
very few exceptions, useful probability models are based on assumptions that are not likely to be 
exactly correct. But with some caution and some luck we can hope to get serviceable 
approximations.  

• We do not know which binomial model would be the right one for the distribution of N.  But we 
have seen that the particular choice doesn't matter because any reasonable binomial model is 
nearly Poisson.  

• We don't know whether the discrete model, the normal model, or some kind of model we have not 
thought to consider is the best one for the individual customer bills Xi. However, mainly because 
of the Central Limit Theorem, we have seen that two very different choices give about the same 
result.  

There are some additional modeling issues we have not yet discussed that do not turn out to be 
worrisome.  

First, it is possible that groups of customers may arrive and place very similar orders. Even so, 
it is probably OK to assume that the Xi are essentially independent.  

Second, because our fast food operation is organized so that most orders—from the cheapest to 
the most expensive—are placed simply as numbers from a menu, it is probably safe to assume 
expensive orders do not slow the traffic enough to influence the number N of people served 
during the lunch hour. So it also seems safe to assume that N is independent of the Xi. 
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There are, nevertheless, other worrisome issues to consider. If there are about 225 customers per 
hour, that means on average one customer arrives every 16 seconds. Suppose there are two servers 
(order takers), each of whom handles a customer in exactly 30 seconds. Then, if customers are 
“considerate” enough to arrive at equally spaced 16-second intervals, everyone will get waited on 
with little or no delay. Thus N will be determined by customer demand as we have modeled it—and 
not on whether the system gets overloaded so that some potential customers can’t be served during 
the lunch hour.  

Because such an orderly arrival pattern seems unlikely in the real world, we wonder what kind of a 
probability model would reasonably describe customer arrivals. One simple and fairly reasonable 
assumption is that customers arrive independently and according to a uniform distribution within 
the 60 minute lunch hour from noon to 1 p.m.  

A simple simulation illustrates this distribution of arrival times. First, we used the distribution 
POIS(225) to simulate N = 218 customers arriving during a particular lunch hour. Then we 
simulated 218 independent arrival times Ti according to the distribution UNIF(0, 60). Not 
surprisingly, a histogram (not shown) of these arrival times has bars of approximately equal 
heights. 

A beginning student might guess that the intervals Wi between these arrivals would also be roughly 
uniform, but that guess is far from the truth. A continuation of our simulation shows these 
interarrival times to be distributed exponentially. With an average rate 225 per 60 minutes or  
λarr = 225/60 = 3.75 arrivals per minute, the mean time between arrivals is 1/3.75 = 0.267 minutes 
or 16 seconds. 
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Figure 6.  Exponentially distributed interarrival times between successive customers where N = 218 
arrival times are uniformly distributed on (0, 60). 
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To find the interarrival times for our simulated lunch hour, we sort the arrival times Ti in order from 
earliest to latest, and take differences to find the N interarrival times Wi (including the first, which 
we take to start at time 0).  In R, three simple statements do the entire simulation: 

n = rpois(225);  t = runif(n, 0, 60) 
w = diff(sort(c(0, t))) 
 

In one simulated lunch hour, the average interarrival time was 0.27 minutes. Figure 6 shows the 
histogram of these interarrival times along with the density function of the exponential distribution 
with rate 3.75 customers arriving per minute, which fits the histogram very well. 
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7. Queueing Models 

In this case the choice to use an exponential model for service times is motivated, at least in part, by 
convenience. If we make this choice, then our system of arrivals and departures follows a much-
studied probability model known as the M/M/2 queue. 

A characteristic of most queues is an interplay between the rate of arrivals and the rate at which 
customers get served and depart. In our queueing model, the arrival rate is 3.75 per minute and the 
capacity for service is 2 servers times λsrv = 2 per minute, or 4 customers per minute altogether. 
Because 2λsrv = 4 > λarr = 3.75 our model reaches a steady state in which the arrivals and departures 
are in balance. (When the capacity is less than the arrival rate, the number of people waiting to be 
served increases relentlessly to infinity.)  

Assuming steady state conditions during the lunch hour, standard formulas for an M/M/2 queueing 
system give the following average values: 225 customers arrive, 225 customers are served, 15.5 
customers are waiting in line or being served at any given instant, and a customer’s wait until being 
served is 4 minutes and 8 seconds (4.13 minutes).   

However, under these conditions where the system is operating at almost full capacity (with 2λsrv 
only a little larger than λarv) the actual number waiting in line can occasionally get very large. The 
servers are almost always busy so that only about 9% of arriving customers get served immediately 
without having to wait in line.  

Figure 7 shows ten simulated hours under these conditions. The vertical axis plots the number of 
customers “in the system,” including the 0, 1, or 2 people being served as well as any who are 
waiting in line. In the real world, one wonders whether some customers might be lost to nearby 
restaurants when arriving customers see 20 or more people already in the system. (Separate 
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simulation runs in which all such customers are assumed lost show the average number of customers 
lost in this way to be between 4 and 5 per hour. This is a much more stable simulation because a few 
lost arrivals help the queue to decrease in size just when it most needs this help.) 

 

Figure 7. Simulation over a ten hour period of an M/M/2 queue with λarr = 3.75/min and 2λsrv = 4/min. 
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R code for the simulation in Figure 7 is shown in the Appendix. Briefly, the method of simulation is 
to model a potential arrival event as exponential with rate λarr and a “competing” potential departure 
event as exponential with rate bλsrv, where b is the number of servers currently busy. The one of 
these two events that occurs first “wins” and not only determines the time interval between events, 
but also whether the length of the queue increases or decreases by 1 at the end of that interval.  

In contrast to the two-server queue above, suppose there are three servers, each with service rate 
λsrv = 2. (Maybe the manager helps serve during the lunch hour.) Then the average number of 
arrivals and departures per hour is still 225. But the average number of customers in the system 
decreases to 2.52 and the average time before being served is only about 40 seconds. This system 
has a lot of excess capacity. About 61% of the arriving customers are served immediately without 
having to wait in line. Figure 8 shows a simulated ten-hour period for this system. 

Going back to our original problem of accounting for the day with low sales, we see that, in theory, 
neither of these queueing systems shows enough modification of the flow of served customers to 
make much of a difference in total lunch hour sales. Either way, the number of customers served 
during the lunch hour is still approximately distributed as POIS(225).  

In practice, the two-server queue shown in Figure 7—with almost no excess capacity—might 
sometimes result in an unpleasant lunch hour for servers and customers alike. Here any little 
departure from the assumptions of the model (such as time out to replace the roll of paper in one of 
the cash registers or a brief restroom break for one of the servers) might lead to an extremely long 
waiting line and perhaps a noticeable loss of business. 
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Figure 8. Simulation over a ten hour period of an M/M/3 queue with λarr = 3.75/min and 3λsrv = 6/min. 
The average number of people in the system is smaller than in Figure 7. 
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Queueing theory is used in a variety of applications, particularly in industrial engineering, 
communications, and the design of networks, hardware, and software for computers. Formulas for 
the behaviour of the standard models we have considered here are available in many books on 
stochastic processes and operations research. However, even slight departures from standard models 
can lead to systems that are very difficult or impossible to solve analytically. Consequently, 
simulation methods are extensively used in practical queueing applications.  
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Appendix:  Annotated R Code for Section 7  
(Simulation of an M/M/s Queue, Including Figures 6 and 7) 
 
 
## Queue for a Fast Food Counter   For JSM 2007 Poster    
## Version: July 2007 
## B. Trumbo and D. Ahlberg    
##Comments to: bruce.trumbo@csueastbay.edu 
 
set.seed(12)         # seed used for Fig 6 
 
# M/M/s Queue Parameters 
s = 2       # number of servers (2 for Fig 6, 3 for Fig 7) 
lam.a = 3.75     # customer arrival rate 
lam.s = 2            # service rate (each server) 
 
# Simulation set up 
m = 500000       # events 
w = numeric(m)   # interarrival times 
n = numeric(m)       # number in system 
b = numeric(m)   # number being served = number of busy servers 
a = logical(m)       # TRUE if event is Arrival, FALSE if Departure 
n[1] = 5             # number in system at start (arbitrary) 
b[1] = min(n[1],s)   # number in service at start (DO NOT CHANGE) 
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# Simulation: One event (arrival or departure) per loop 
for (i in 2:m) 

{ 
x = rexp(1, lam.a) # potential time to next arrival 
y = Inf            # pot. time to next dep. ('Inf'inity if queue empty) 
if (b[i-1] > 0) y = rexp(1, b[i-1]*lam.s)  # dep. rate depends on b 
#if (n[i-1] >= 20) x = Inf  # If used, limits number in system to 20 
w[i-1] = min(x, y)      # actual time to next event 
                        # Categorize event as arrival or departure 
if (x <= y) {arr = T}        
else {arr = F} 
a[i] = arr 
# Track number n in system; number b in service 
if (arr)                  n[i] = n[i-1] + 1 
if (arr & (b[i-1] < s))   b[i] = b[i-1] + 1 
if (arr & (b[i-1] == s))  b[i] = b[i-1] 
if (!arr & (n[i-1] > 0))  n[i] = n[i-1] - 1 
if (!arr & (n[i-1] <= s)) b[i] = b[i-1] - 1 
if (!arr & (n[i-1] > s))  b[i] = b[i-1] 
} 
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# Numerical Output 
cbind(w, a, n, b)[1:20,]                      # Summary of first 20 events 
avg.l = sum(w*n)/sum(w);  avg.l               # Avg number in system 
sd.l = sqrt(sum(w*n^2)/sum(w)- avg.l^2); sd.l # SD number in system 
avg.w = avg.l/lam.a;  avg.w                   # Avg time in system 
 
q = n - b                                     # Number in queue 
avg.lq = sum(w*q)/sum(w); avg.lq              # Avg number in queue 
sd.lq = sqrt(sum(w*q^2)/sum(w) - avg.lq^2 ); sd.lq   # SD number in queue 
avg.wq = avg.lq/lam.a; avg.wq                 # Avg time in queue 
sum(w[b==0])/sum(w)                           # % of time all servers idle 
sum(w[b<s])/sum(w)                            # % of time cust. served 
immed. 
 
# Graphical Output 
plot(cumsum(w),n,type="s",xlim=c(0,600), ylim=c(0, 45), xaxs="i",  
  main=paste("Simulated ",s,"-Server Queue", sep=""),  
  ylab="Customers in System", xlab="Minutes") 
abline(v=seq(60, 599, by=60), col="green3", lwd=2) 


