
Is It Normal? A Simulation Study of

Properties of Some Normality Tests

Daniel M. Sultana, Charlyn J. Suarez, Bruce E. Trumbo, Eric A. Suess

April 18, 2006

Statistical packages can perform several different
goodness-of-fit tests of normality. We consider the
normality tests of Anderson-Darling, Shapiro-Wilk,
Cramér-von Mises, and Kolmogorov-Smirnov. For a
given dataset these tests sometimes lead to different
conclusions, possibly leaving students and practition-
ers confused about which test to believe. We use the
statistical package R to simulate normal and non-
normal data and to compare behaviors of these four
tests.

Specifically, we explore differences among the tests
in several ways, focusing on reasons for their dis-
agreement, on their relative power for several kinds
of nonnormal data, and effects of using the tests in
combination (for example, in terms of maximum and
minimum p-values of several tests). Methods and R
code are at an appropriate level for classroom use.

1 Introduction

Imagine that a colleague wanted to know if the data
in Table 1 were normal.

8.3 8.6 8.8 10.5 10.7 10.8 11.0
11.0 11.1 11.2 11.3 11.4 11.4 11.7
12.0 12.9 12.9 13.3 13.7 13.8 14.0
14.2 14.5 16.0 16.3 17.3 17.5 17.9
18.0 18.0 20.6

Table 1: R trees data variable girth

Both the Anderson-Darling and the Cramér-von
Mises tests seem to indicate not. In contrast, results

of both the Shapiro-Wilk and the Lilliefors tests are
consistent with normality.

Test Statistic p-value
Anderson-Darling 0.7455 0.04668
Cramér-von Mises 0.1283 0.04353
Shapiro-Wilk 0.9412 0.08893
KS/Lilliefors 0.1414 0.1179

Table 2: Is the data sample from a normal distribu-
tion?

A qqplot of the data indicates some departure from
normality.
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Figure 1: qqplot of trees girth

2 Description of the tests

There are a number of statistical tests available for
checking if data are normal. We provide informal de-
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scriptions of these tests. Formal definitions are avail-
able in [1] [2]. In R, some of the tests are in the
supplementary package ”‘nortest”’.

• The Kolmogorov-Smirnov statistic measures the
maximum vertical distance between the empiri-
cal cdf and a normal cdf with mean µ and vari-
ance σ2. The KS test uses extreme values of
the KS statistic to detect nonnormality. When
the mean and variance are estimated from the
data, the test changes slightly and is known as
Lilliefors test. In R, the commands are ks.test
and lillie.test.

• The Cramér-von Mises statistic is an average of
the the squared distances between the empirical
cdf and the normal cdf. The Cramér-von Mises
test uses large values of the statistic to detect
non-normality. In R, the command is cvm.test.

• The Anderson-Darling statistic is a weighted av-
erage of the squared distances between the em-
pirical cdf and the normal cdf. It gives more
weight to the differences between the tails of the
edf and normal cdf. The Anderson-Darling test
uses large values of the statistic to detect non-
normality. In R, the command is ad.test.

• The Shapiro-Wilk statistic is the ratio two esti-
mators of the variance. In R, the command is
shapiro.test.

3 When do the tests agree and
disagree?

The example in the introduction illustrates that the
normality tests can give conflicting results about
whether or not a data set is normal. We wanted
to determine which tests tend to give similar results
and which tend to disagree. 10,000 samples of size
30 were pulled from a Normal(0,1) distribution. Ta-
ble 3 displays the number of times the various tests
rejected normality at the 5% level.

The Cramér-von Mises and the Anderson-Darling
tend to agree most of the time on which data sets
are non-normal. These tests are based on similar

Test Count
Anderson-Darling 500
Anderson-Darling and Cramér-von Mises 420
Anderson-Darling and Shapiro-Wilk 344
Anderson-Darling and Lilliefors 262
Cramér-von Mises 489
Cramér-von Mises and Shapiro-Wilk 278
Cramér-von Mises and Lilliefors 290
Shapiro-Wilk 499
Shapiro-Wilk and Lillifors 197
Lilliefors 472

Table 3: Reject normality 10,000 samples of size 30

similar statistics [3]. The Shapiro-Wilk test agrees
with the Anderson-Dariling more than with Cramér-
von Mises. Lilliefors test agrees with the other tests
about half the time.

Since the tests disagree for many of the data sets, it
is reasonable to try and identify characteristics of the
datasets that are making the different tests reject.

• Skewness: Recall that the Gamma(n, 1
n ) distrib-

ution is almost normal N(1, 1
n ) for large n but is

skewed right for small n. To determine which
test best detects skewed data sets, we pulled
samples from Gamma(n, 1

n ) and ran the differ-
ent normality tests on the samples. The results
are plotted in Figure 2. Note that the Shapiro-
Wilk test rejects skewed data most often.

• Kurtosis: Recall that the t distribution with
df=n is almost normal for large n but has thick
tails for small n. To determine which test best
detects fat tailed data sets, we pulled samples
from t(df = n) and ran the different normality
tests on the samples. The Shapiro-Wilk test re-
jected most often. The Anderson-Darling and
Cramér-von Mises were nearly as effective. The
Lilliefors tests was least effective.

• Bimodal: Samples were drawn at random from
one of two normal distributions N(0, 1) and
N(µ, 1). The resulting samples have a bimodal
distribution. The parameter µ was varied from
near zero to 10. The Anderson-Darling and
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Figure 2: Fraction rejected vs. skewness, gamma dis-
tribution

Cramér-von Mises were equally effective at de-
tecting this type of non-normality followed by
the Shapiro-Wilks and Lilliefors tests.
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