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Abstract 

Statistical packages can perform several different goodness-of-fit tests of 
normality. We consider the normality tests of Anderson-Darling, Shapiro-Wilk, 
Cramér-von Mises, and Kolmogorov-Smirnov. For a given dataset these tests 
sometimes lead to different conclusions, possibly leaving students and 
practitioners confused about which test to believe. We use the statistical 
package R to simulate normal and nonnormal data and to compare behaviors 
of these four tests.  We also consider the effects of using the tests in 
combination (for example, in terms of maximum and minimum p-values of 
several tests).  

Introduction 
Imagine that a colleague asked you if the data set shown in the stem and leaf 
plot  were normal. A qq-plot of the data is in figure 1. The four tests check 
normality in different ways. Here the tests disagree about whether the data 
set is normal . 
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Test  p-value  

Anderson-Darling  0.08  

Cramér-von Mises  0.19  

Lilliefors (Kolmogorov-Smirnov)  0.40  

Shapiro-Wilk  0.01  

Methods 

Results 

    Simulations were done with the computer package R ver 2.3.1. In R, the 
Shapiro-Wilks test is available in the base package. The other normality 
tests are in the “nortest” package. 
  The purpose of the first simulation was to determine if the normality tests 
tended to identify the same data sets as non-normal. 10,000 normal 
samples of size 20, 50, and 100 were created and the four normality tests 
were run against the data. The data sets where normality was rejected 
were recorded. The lists of rejected data sets from the different normality 
tests were compared. 
  The purpose of the second simulation was to compare the power of the 
four tests. 10,000 samples of size 20, 50, and 100 were drawn from various 
non-normal distributions. The four normality tests were run at the 5% level 
and the fraction of data sets where normality was rejected was recorded. 
  The purpose of the third simulation was to investigate how using the 
information from all four tests at once influenced the size of the test. 50,000 
samples of size 20, 50, and 100 were drawn from the normal distribution. 
For each sample, the minimum and maximum p-value from the four tests 
was stored. The fraction of the data sets where the minimum p-value was 
less than alpha was stored. Similarly, the fraction of the data sets where 
the maximum p-value was less than alpha was stored.  
  The purpose of the fourth simulation was to compare the power of the two 
joint tests. The sizes of the individual tests were set so that the size of the 
joint test was 5%. 
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The results from the first simulation are shown in table 1. The normality tests do not always agree about which data sets should be identified as non-normal.  
 
The results from the second simulation are shown in figure 2. The figure shows that the for the joint test to reject at the 5% level, the size of the individual 
component tests must be adjusted. 
 
The results from the third and fourth simulations are shown in table 2. The Shapiro-Wilks test had more power than the other individual tests in most cases. The 
joint test formed by taking the minimum p-value from the four tests was more powerful than the joint test formed by taking the maximum p-value. 

Conclusions 

The Shapiro-Wilk test is available in most commercial statistical 
software packages. Within the scope of our simulations, it should be 
used in lieu of the other normality tests because of its power. 
 
Casually combining or choosing normality tests results in tests whose 
size and power differ from the original tests. 
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  Number Rejected 
out of 10,000 

normal samples 
Individual Tests n=20 n=50 n=100 

Cramer-von Mises (CVM) 495 493 563 

Anderson-Darling (AD) 489 510 559 

Shapiro-Wilk (SW) 489 495 531 

Lilliefors (KS) 458 507 534 

        

Combined Test       

AD and CVM 421 424 471 

AD and SW 364 320 328 

CVM and KS 305 309 354 

CVM and SW 302 267 267 

AD and KS 269 284 321 

SW and KS 203 196 214 
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  n=20 n=50 n=100 
  AD CVM SW KS max min AD CVM SW KS max min AD CVM SW KS max min 
Symmetric alternatives with shorter tails than normal 
Beta(1/2,1/2) 62 51 73 32 47 61 99 96 100 79 92 100 100 100 100 100 100 100 
Uniform 17 14 20 10 16 14 57 44 75 25 42 60 95 85 100 59 100 59 
Triangular 4 4 3 4 4 4 5 4 5 4 5 4 8 6 11 5 11 5 
  
Symmetric alternatives with longer tails than normal 
t(5) 17 16 19 13 16 18 30 27 35 21 26 33 48 44 56 34 43 52 
Logistic 10 10 12 8 10 11 15 13 19 11 13 18 24 21 30 16 22 27 
  
Skewed alternatives 
Weibull(10) 14 13 16 11 16 11 29 26 35 20 27 31 52 47 63 36 48 56 
Weibull(3) 5 5 5 5 5 5 6 6 6 5 6 5 7 7 8 7 8 6 
Gamma(1,1) 77 73 84 58 84 58 100 99 100 96 99 100 100 100 100 100 100 100 
Gamma(10,0.1) 12 11 15 10 15 10 26 23 32 18 24 28 48 42 61 34 45 52 

Figure 1: qq-plot of data in stem and leaf plot 

Table 1: Shows that the normality tests identify different 
data sets as non-normal. 

Figure 2 : Two joint tests were studied. In the first joint test, the p-value of the test was set 
equal to the minimum p-value from the four individual tests. This was equivalent to 
rejecting normality when at least one test rejected normality. In the second joint test, the p-
value of the test was set equal to the maximum p-value from the four individual tests. This 
was equivalent to rejecting normality when all of the tests rejected normality.  

Table 2: Power of 6 normality tests against various alternative distributions. The four individual normality tests are Anderson-Darling (AD) , Shapiro-Wilk (SW) , Cramér-von Mises (CVM), and Lilliefors (KS). The two joint tests are formed by using the 
minimum and maximum p-value from each of the four tests. All tests were run at the 5% level. 


