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Introduction 
 

Many computer packages make boxplots that indicate 
outliers. That is, values beyond fences located a certain 
multiple K of the interquartile range (IQR) on either side 
of the box bounded by the lower and upper quartiles. 
When K = 3 the resulting outliers are sometimes called 
probable outliers and when K = 1.5 they are sometimes 
called possible outliers. Some textbooks recommend 
against the use of normality based procedures, such as  
t tests, when outliers are present.  
 This raises the question about how often boxplots 
give indications of outliers for normal data. Because a 
study of the order statistics of normal distributions is 
beyond the scope of undergraduate mathematics, we show 
how relatively straightforward simulations in R can be 
used to answer this and related questions. 
 

Confusing outlier indications for normal data 
 

 Figure 1 illustrates that potentially misleading outlier 
indications are fairly common with normal data. It shows 
boxplots based on 20 simulated normal samples of size 
16; five of these boxplots have indications of possible 
outliers (K = 1.5). Because we know the data are normal, 
these 'outliers' surely do not indicate nonnormality. 
Simulation shows that on average about 30% of boxplots 
of n = 16 normal observations indicate outliers.  If n = 64, 
then nearly half of normal samples will yield indications  
of possible outliers. For probable outliers (K = 3) the 
situation is reversed; probable outliers are more often 
indicated for n = 16 (about 2.5% of samples) than for  
n = 64 (about 0.5%).  See Figures 2 and 3. 
 

 
Figure 1.  Five of these 20 boxplots of simulated normal 
data show 'outliers.' The expected number is about six. 
 

 Because boxplots give such frequent indications  
of possible outliers for normal data, because the 
probability of such outlier indications depends strongly 
on sample size and because boxplots carry no indication 
of sample size, a useful interpretation of possible outliers 
in boxplots is especially problematic. 

 This is not to deny that boxplot indications of outliers 
are useful. In practice—with real data—if an observation 
is indicated as an outlier, a responsible statistician would 
want to check whether this can be ascribed to a meas-
urement or recording error. The message in our simula-
tions is that one should not be too quick to assume data 
are nonnormal just because a boxplot shows an outlier. 
 

 
Figure 2.  The upper panel compares probabilities of 
possible outliers (K = 1.5) with outliers based data points 
more than K = 2.25 IQR beyond the ends of the box. 
The lower panel compares K = 2.25 with K = 3.0. 
 

Simulating the probability of false outliers 
 

 Figure 2 shows the probability of at least one outlier 
for normal samples of various sizes and for K = 1.5, 2.25, 
and 3.0. The value K = 2.25 is not a standard one. We 
show it because it has a relatively stable probability of 
outlier indications across samples of small to moderate 
size. Over the range of sample sizes shown, the 2.25 IQR 
criterion yields outlier indications for about 5-8% of 
normal samples. The 1.5 IQR criterion is increasingly 
likely to show (possible) outliers as sample size 
increases, and the (probable) outliers from the 3 IQR 
criterion become less likely as sample size increases. 
Some of the numbers used to make Figure 2 are shown in 
Figure 3. Each point is based on 10,000 samples. 
 

 

   n   1.5 IQR  2.25 IQR   3 IQR  
  16   0.2950   0.0823   0.0244 

     32   0.3475   0.0618   0.0102 
      48   0.3976   0.0590   0.0061 
     64   0.4462   0.0598   0.0053 
    104   0.5582   0.0566   0.0026 
    128   0.6153   0.0618   0.0032 
   192   0.7310   0.0649   0.0020 
 

Figure 3. Probabilities of outlier indications as in Figure 2. 



 
Figure 4. Average numbers of outlier indications for 
normal data. Each point is based on 10,000 samples. 
 

 It is not surprising that, as the probability of at least 
one outlier in a sample increases, so does the average 
number of outliers in a sample. However, multiple 
outliers are relatively rare for small normal samples. 
Figure 4 is similar to Figure 2, but it shows the average 
number of outliers per sample. 
 

Controlling the probability of outlier indications 
 

As the value of K increases, the probability decreases 
that a normal sample will show one or more outliers. 
For several sample sizes, the R code in Figure 5 finds 
values of K that restrict the probability of outliers to 
1%, 7% and 20. (Code for some labels and other 
embellishments is omitted.) Results are plotted in 
Figure 6. The horizontal line shows that the value  
K = 2.25 we used above is somewhat arbitrary. Among 
possible values in the vicinity we chose it because it is 
midway between 1.5 and 3.0, and easy to remember. 
 
 

m = 10000 
n = c(24, 32, 40, 48, 64, 80, 104, 128, 
 192, 256, 320)  
k.99 = k.93 = k.80 = numeric(length(n)) 
for (i in 1:length(n)) 
{ 
  x = rnorm(m*n[i]) 
  DTA = matrix(x, nrow=m) 
  q = t(apply(DTA, 1, quantile)) 
  iqr = q[,4] - q[,2] 
  wskr = pmax(q[,2]-q[,1], q[,5]-q[,4]) 
  cnst = wskr/iqr 
  k.93[i] = quantile(cnst, .93) 
  k.99[i] = quantile(cnst, .99) 
  k.80[i] = quantile(cnst, .80) 
} 
plot(n, k.93, ylim=c(1.5,3.5)) 
points(n, k.99, pch="*") 
points(n, k.80, pch="x") 
abline(h=2.25, lty=2) 
 
Figure 5.  R code used to produce Figure 6. 

 
Figure 6.  Values of K that yield various percentages of 
outlier indications in simulated normal samples 
 

What is an outlier?  
 

Vaguely speaking, an outlier is a value in a dataset that 
is, according to some criterion, located at an unusually 
large distance from the rest of the data. While boxplots 
are probably the most familiar way to look for outliers, 
there are many other methods of doing so. Another 
criterion, often used in regression and not explored here, 
is for a value to lie more than two standard deviations 
away from the mean of the data, where the value  
in question is omitted when the standard deviation is 
computed.  
 Particularly with supposedly normal data, an outlier 
may be traceable to equipment failure or a recording 
error—an observation that did not arise from the assumed 
normal process, but from some other kind of process. But 
for many skewed or long-tailed distributions (for 
example, exponential and other members of the gamma 
family, lognormal, Pareto, Cauchy, Laplace, and so on) 
outliers are an expected feature of the data. 
 Great care should be taken in omitting an outlier 
before data analysis, unless one can be sure the 
observation arose from a mechanism that is not a valid 
feature of the process under study. For example, in 
studying earthquakes, there are hundreds of low-
magnitude seismic events every day that can be detected 
with special equipment., but it is only the extreme 
outliers that are of practical importance to the general 
public. In the next section we discuss some properties of 
boxplot outliers for a few nonnormal distributions. 
 
Outliers in nonnormal distributions 
 

As one would expect, simulation shows that a sample 
from a long-tailed distribution is more likely to yield 
boxplot outlier indications than is a normal sample of the 
same size. Figures 7 and 8 show results for t-distributed 
data (df = 3) and GAMMA(10, 1) data, respectively. 
They are similar to Figure 2, except that here it is feasible 
to plot results for all three values of K on the same scale. 



 
Figure 7. Percent of samples from a Student's t distribution 
with 3 degrees of freedom that show outliers. 

 
Figure 8. Percent of samples from a gamma distribution 
with shape parameter 10 that show outliers. 
 

 The corresponding graph for samples from the 
severely right-skewed exponential distribution looks 
very similar to Figure 7. In contrast, samples from a 
uniform distribution, which has no tails, typically show 
outliers only for very small sample sizes. 
 Again for nonnormal data, as the probability of 
outliers in a sample increases, so does its expected 
number of outliers. For samples of various sizes from 
an exponential distribution, Figure 9 shows the average 
number of outliers. (Here, each point is based on 1000 
samples.) It appears that the number of outliers increases 
approximately linearly with sample size. Across the 
sample sizes we investigated, the criteria K = 1.5, 2.25, 
and 3.0 consistently designate as outliers about 5%, 2%, 
and 1% of observations, respectively.  
 

Comments 
 

We close with some comments on boxplots, outliers and 
the use of simulation in undergraduate classes. 
• We have avoided samples of size n = 15 and smaller. 

It does not make sense to use boxplots for samples of 
size smaller than 10 or 15, because boxplots are based 
on the five-number summary, elements of which may 
behave erratically for small sample sizes.   

• One should take care in using boxplot indications of 
outliers (especially from the criterion K = 1.5) to declare 
data to be nonnormal. In R, the default value is K = 1.5, 
but other values can be easily substituted. In Minitab, the 
professional graphics boxplots are based on K = 1.5, and 
the boxplots made with character graphics essentially use 
both K = 3 and K = 1.5. When normal data are 
anticipated, we think K = 2.25 might be a better choice. 
• Simulations at the level used in this paper make 

intellectually stimulating projects for undergraduate and 
first year MS students. The number of  R commands 
required can be kept within reasonable bounds, and 
program structure can be kept relatively simple. Routine 
simulations can illustrate distributional information that is 
widely used in practice, but beyond the level of such 
students to derive analytically.  More ambitious simulation 
projects may reveal facts not found in standard texts. 
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Figure 9. Average number of outlier indications in samples 
from an exponential distribution. Numbers of outliers 
increase approximately linearly with sample size. Each 
point is based on 1000 samples. 


