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Abstract: Appropriate simulations can be used effec-
tively in a beginning statistics course to illustrate impor-
tant principles—either before the underlying theory is
accessible or along with a presentation of the theory.
Here we use a very few fundamental functions in R to
illustrate the margin of error of a public opinion poll.
Polls using 25 and 2500 subjects from a population with
a known proportion “in favor” are simulated repeatedly.
Summaries of results illustrate that point estimates of the
proportion in favor are variable and approximately nor-
mally distributed, and that errors are smaller for the
larger number of subjects. Interval estimates are dis-
cussed. A slightly more advanced simulation illustrates
that, during the process of a poll, the proportion of steps
at which the running fraction in favor is higher than the
population probability is much more likely to be near 0
or 1 than to be near half, following Feller’s arcsine law (a
“bathtub shaped” beta distribution).
Key Words: Public opinion poll, margin of error,
simulation, Feller arcsine law, teaching, R.

1.  Introduction. In this paper we use R statistical
software to do some simple simulations and make
graphical and numerical summaries of the results. R can
be downloaded online easily and without charge [1],
and it performs the operations we need here, including
simulations based on a pseudorandom number genera-
tor of very high quality. While R is not as easy for
beginners to use as point-and-click software, we have
found that students have little difficulty learning what is
needed for elementary simulations if some restraint is
exercised in the complexity of the code and the number
of functions used. We review statistical ideas briefly,
mainly to establish notation. But we explain the most
important R code in a little more detail, and complete
documented code is available online [2].

We begin by using simulation to illustrate the
margin of error in a pre-election public opinion poll.
Consider a population in which the proportion π = 0.53
of the population favors Candidate A (has trait A) and
the remainder has trait B (non-A). In practice, π would
be unknown and we might wonder whether π is greater
than one half.

Accounts of most public opinion polls include
information about the margin of sampling error based
on 95% confidence. Assume simple random sampling,
a population proportion π between 0.4 and 0.6, and a
number n of subjects large enough to justify use of
the normal approximation. Then an approximate 95%

confidence interval for π is p ± n–1/2. Here p denotes the
sample proportion favoring A, computed as p = X / n,
where X is the number of subjects favoring A. Thus, the
margin of sampling error is E = n–1/2. For example,
E = 0.02 would be reported for a poll based on n = 2500
subjects, and E = 0.04 for n = 625. If π = 0.53, then
2500 subjects would likely be enough to detect that
more than half of the population favors A, but 625
subjects might not be enough.

For values of π nearer 0 or 1, smaller values of E
suffice. More generally, an approximate 95% interval
is p ± 1.96[p(1 – p) / n]1/2. Especially for smaller n, we
can improve the accuracy of these approximations if
we first increase n by 4 and X by 2 [3, 4]. Of course,
none of these computations account for nonsampling
errors such as nonresponse bias, misinterpreted ques-
tions, or dishonest answers.
2.  A very small poll.  We begin by simulating a poll
with only n = 25 subjects. As an example, the R code
> sample(0:1, 25, rep=T, prob=c(.47, .53))
might return
 [1] 1 0 1 1 0 0 1 0 0 1 0 0 0

[13] 0 1 0 1 0 1 1 1 0 1 1 0

Here, the first argument 0:1 specifies that we will
sample opinions 0 or 1, where 1 represents a respondent
favoring A and 0 a respondent not willing to declare
for A—maybe opposed, maybe undecided. [If j and k
are integers with j < k, then j:k represents the vector
(j, j + 1, j + 2, ..., k); so 0:1 is the same as c(0,1).]
The second argument 25 is the number of “subjects” to
be sampled, the third specifies sampling with replace-
ment, and the last specifies that the proportions of 0s
and 1s in the population are 0.47 and 0.53, respectively.

Figure 1
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n <- 25;  Trial <- 1:n;  p.ba <- c(.47, .53)
x <- sample(0:1, n, rep=T, prob=p.ba)
run.tot <- cumsum(x)
Proportion <- run.tot/Trial
plot(Trial, Proportion, type="l", ylim= c(0,1))
abline(h=.5, col="green", lwd=2)

Display 2

      Trial x run.tot Proportion
 [1,]     1 1       1      1.000
 [2,]     2 0       1      0.500
 [3,]     3 1       2      0.667
 [4,]     4 1       3      0.750
 [5,]     5 0       3      0.600
 [6,]     6 0       3      0.500
 [7,]     7 1       4      0.571
 [8,]     8 0       4      0.500
 [9,]     9 0       4      0.444
[10,]    10 1       5      0.500

Display 3

In the output, the brackets give the index of the first
observation printed in each row: the 13th number in the
output vector was 0. Of the 25 simulated “respondents” 12
favored A, a misleading result because p = 12/25 < 1/2
while π > 1/2. Because this is a simulation of a random
process, the result will be different each time you
execute the same command in the R console window.

In Figure 1, we graph the results of this simulation
by plotting the cumulative fraction of the sample
favoring A at each trial against the trial number. The
first five cumulative fractions are 1/1 = 1, 1/2, 2/3,
3/4, and 3/5; the 25th is 12/25.

The R-script in Display 2 was used to make Figure 1.
In it we used the assignment operator <- to establish a
constant n, a vector Trial of the integers from 1
through 25, a vector p.ba of two probabilities, a vector
x of 25 simulated poll results, and a vector cum.tot of
cumulative sums of x. The vector Proportion consists
of 25 fractions: Each element of cum.tot is divided by
the corresponding element of Trial. (See Display 3.)

Two of the arguments of the plot function are
plot="l" (with the letter ell) to plot lines instead of
points (the default), and ylim=c(0,1) to force the y-axis
to run from 0 to 1. Finally, the abline function plots the
slightly thick, green horizontal reference line at p = 1/2.

Before going on, it is crucial for students to
understand the process that leads to Figure 1. Some
hand work may be in order. Depending on the level and
size of the class, you might “poll” n = 10 or so students
in sequence with A = Female, and fill in a table with n
rows and with columns: Trial Number, F or M, 1 or 0,
Running Sum, and Running Proportion. Alternatively,
or in addition, you might append the following line of
code to Display 1, which makes a similar table in R:
round(cbind(Trial, x, run.tot, Proportion), 3)

Here cbind “binds together” the four vectors used as

arguments to make a 25-by-4 matrix, and round with
second argument 3 rounds the running proportions to
thee places. Display 3 shows the first five rows of the
resulting output with the same simulation as in Figure 1.

In the classroom, the next step would be to run the
simulation of Display 2 several times to see that the
shape of the trace (as in Figure 1) is very different from
one run to the next: There is no stability in the behavior
of this small poll. Also, notice that the endpoints of the
traces vary considerably. These endpoints are the point
estimates p of the population proportion π = 0.53.
Typically, the values of p will lie between 0.33 and
0.73. To save space here, we do not show multiple
versions of Figure 1, but Figure 4 shows superimposed
traces for 20 runs obtained from the code in Display 5.

In Display 5, the set.seed function ensures that
the same 20 simulations occur again on each run of the
code; omit it for a different set on each run. The plot
function sets up the axes and labels, but plots nothing.
Here we use parameters rather than variable names (the
default) to label the axes. The lines function inside
the loop plots one trace on these same axes for each of
20 passes through the loop. The code inside the loop is
essentially the same as lines 2, 3, and 4 in Display 2.

Figure 4

set.seed(13)
n <- 25;  m <- 20
plot(0, pch=" ",
 xlim=c(0,n), ylim=c(.25,.75),
   xlab="Trial", ylab="Proportion")
       # Empty plot for axes, labels

for (i in 1:m) {
 x <- cumsum(sample(0:1, n, rep=T,
 prob=c(.47,.53)))/(1:n)
 lines(1:n,x) }

abline(h=.5, col="green", lwd=2)

Display 5
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Figure 6

Figure 6 is a histogram of estimates p resulting from
m = 10,000 simulated polls, each with n = 25 subjects.
It shows that p is approximately normally distributed
with E(p) = 0.53 and SD(p) = [0.53(0.47)/25]1/2 ≈ 0.10.
We see that E ≈ 0.20. More than 3800 of the 10,000
estimates p have misleading values below 0.50. While
they are so variable as to be useless, the values of p
nevertheless follow a specific distribution.

 The code for Figure 6 is shown in Display 7. Before
the loop we use numeric(m) to define Estimate, a
vector of m 0s. On the ith pass through the loop, the ith 0 is
replaced by the estimate of π from the ith simulated poll.

A complication in making the histogram is that, with
n = 25, the m estimates p typically take only about 15
distinct values altogether. The default algorithm in R for
choosing intervals works badly for such granular non-
integer data. So we define intervals centered on possible
values of p with cutpts, a sequence of values running
from just above 0 to just below 1, and 1 / n units apart. (For
n > 50, we let the algorithm choose about 20 cutpoints.)
Also, we use ylim to make the plotting window a little
more than tall enough for the approximating normal
density curve, and prob=T to put the histogram on
a density scale matching that of the normal curve.

m <- 10000;  n <- 25;  pa <- .53
pb <- 1 - pa

sd <- sqrt(pa*pb/n)

Estimate <- numeric(m)

for (i in 1:m)  {
  Estimate[i] <- mean(sample(0:1, n,
    rep=T, prob=c(pb, pa))) }

cutpts <- seq(1/(2*n), 1, by=1/n)
if (n > 50) cutpts <- 20
hist(Estimate, breaks=cutpts,
  xlab="Estimated Proportion with Trait A",
    ylim=c(0, 0.45/sd),  prob=T)
zz <- seq(0, 1, length=1000)
zd <- dnorm(zz, pa, sd)
lines(zz, zd)

Display 7

3.  A larger, more useful, poll. Now we look at simu-
lated polls with n = 2500 subjects. Intuitively, with a
larger sample we would expect to get better estimates
of π — that is, estimates with a smaller margin of error.
A program similar to that of Display 2 yields the path
shown in Figure 8. (The important changes in the program
are that n <- 2500 and that the vertical plotting window
is now set by the parameter ylim <- c(.25, .75). )

When the number of trials is still small, the trace
seems quite erratic, but it becomes more stable at the
right side of the plot, where the number of trials becomes
large. If you repeat this simulation several times, you will
see that the left side of the traces can be very different in
shape from one run to the next. But the right side of each
trace is about the same, settling down to very near
π = 0.53 in each case.

Figure 8

Figure 9

In Figure 9 we illustrate the tendency of such traces
to stabilize, by showing 20 of them superimposed. (The
code is similar to that of Display 5.) Figure 10 shows a
close-up view of the right side of Figure 9. (To adjust
the plotting window, we used xlim=c(n-100, n)
and ylim=c(.48, .57).)
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Figure 10

Figure 11

In both Figures 9 and 10 the interval 0.53 ± 0.02 is
indicated by heavy (red) lines at the right edge. For the
particular 20 traces shown in these figures (based
on set.seed(1)),  it happens that the fraction of traces
with endpoints in this interval is 19/20 = 95%. Of course,
some random sets of 20 traces are better behaved
than these, and some worse.

Looking at the endpoints of the 20 traces of simu-
lated polls in Figures 9 and 10, we see that a poll with
n = 2500 subjects is large enough that we would usually
detect that π = 0.53 is larger than the proportion 0.50
required to win an election.

Figure 11 shows confidence intervals for each of the
20 simulated polls in Figures 9 and 10, based on the
formula p ± 1.96[p(1 – p) / n]1/2. Only one of them fails
to cover π = 0.53, and only a few others extend down
near 0.50. (The loop structure of the code is similar to
that in Display 5, but with the axes reversed; see [2].)

The histogram in Figure 12 shows results from
10,000 simulated polls. (The code in Display 7 works
by changing only n <- 2500.)  As in Figure 6, the
distribution of estimates p is very nearly normal. The
important difference between Figures 6 and 11 is seen

in the horizontal scale. For polls with 2500 subjects,
almost all values of p are in the interval 0.53 ± 0.02
and almost all are above 0.50. In our run of 10,000
polls, only 8 estimates p fell below 0.5 (found using
length(Estimate[Estimate < .5])). Figure 13 com-
pares the density curves of the approximating normal
distributions in Figures 7 and 12.
4.  Margin of error for a candidate’s lead. We have
seen some evidence from simulations that a 95%
confidence interval for π in a poll based on n subjects
has margin of error E ≈ n–1/2 in some circumstances of
practical importance. However, a frequent mistake is to
apply the same margin of error to derived quantities
such as the lead one candidate has over another.

Suppose  there are only two candidates A and B and all
subjects express a preference. Then relevant estimates
for the population proportions are pA = X / n for πA and
pB = (n – X) / n for πB, where X is the number of subjects
preferring A and πA + πB = 1. An unbiased estimate of A’s
lead δΑΒ = πA – πb = 2πA – 1 is DAB = pA – pB = 2pA – 1,
which has twice the standard deviation of pA.  Thus the
margin of error for the lead is approximately 2E. Each
subject preferring A is also one less subject for B.

If the population is partitioned into three traits A,
B, and C, then the estimate of A’s lead over B is DAB =
pA – pB , which has standard deviation (see [5, 6])
SD(DAB)  = {[πA(1 – πA) + πB(1 – πB) + 2πAπB] / n}1/2,

where the third term in the numerator is –2Cov(pA, pB).

Figure 12

Figure 13
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Thus, if πA = 0.48, πB = 0.42 and πC = 0.10, then the
margin of error for A’s lead over B in a poll with
n = 2500 would be 1.96 SD(DAB) = 1.96(0.0189) = .0371.
In practice, this margin of error would be estimated
by plugging estimates of the πs into the expression for
SD(DAB):  pA for πA, and so on.

To simulate the situation with traits A, B and C,
substitute -1:1 for 0:1 in the R code, associating A
with 1, B with –1, and C with 0. Then the sums will be
leads of A over B. Also use prob=c(.42, .10, .48)
in the sample function. For the histogram in Figure 14,
we also modified the code in Display 7 with
pa <- .48;  pb <- .42;  pc <- .1
sd <- sqrt((pa*(1-pa)+pb*(1-pb)+2*pa*pb)/n)
zd <- dnorm(zz, pa-pb, sd)

This histogram is consistent with the known lead of
0.48 – 0.42 = 0.06 and SD(DAB) = 0.0189. For our run,
the code sqrt(var(Estimate)) returned 0.01878.

Figure 14

5.  Percentage of trials with A in the lead. Now, for sim-
plicity, assume there are two equally matched candidates
so that taking a poll is like tossing a fair coin. Because
trials are independent there is no “correction” for an initial
chance preponderance of subjects favoring one candidate
or another. The nearly correct estimate of p in a large poll
is often achieved by a sequence that approaches the correct
value through values that rather consistently favor either A
or B.  Feller [7] showed that the percentage of trials with
A in the lead is most likely either near 0 or 1. There are
typically only a few trials on which the two candidates are
tied. (As a small adjustment to ensure symmetry, Feller
takes A to be “in the lead” at trial k if A is tied at trial k,
but truly in the lead at trial k + 1.)

We illustrate this idea with a simple simulation. A
histogram of results from m = 10,000 simulated surveys
with n = 2500 subjects is shown in  Figure 15 along with
the “bathtub shaped” distribution, BETA(1/2, 1/2), which
has an arcsine function as its cumulative distribution
function. The code for the histogram (but not the curve) is
shown in Display 16. (See [2] for notes on the code.)

Figure 15
set.seed(2);  m <- 10000;  n <- 2500
Leading <- numeric(m)
for (i in 1:m) {
  x <- sample(c(-1,1),n, repl=T)
  cum <- cumsum(x)
  pos <- (cum[1:(n-1)] > 0) | (cum[2:n] > 0)
  Leading[i] <- mean(pos) }
cutpt <- seq(0, 1, by=.1)
hist(Leading, prob=T, breaks=cutpt)

Display 16
6.  In the classroom. In a precalculus service course, a
demonstration based on simulations in Sections 1-4 can
be used to introduce confidence intervals for proportions.
In beginning statistics courses for majors in science and
engineering, we have found that it is feasible for students
to understand and run the programs, and to do exercises
requiring minor modifications of the code [2]; also
perhaps to try other elementary simulations based on the
sample function [2, 8]. More advanced courses can also
benefit from simulations and computations in R [9, 10].
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Addendum to Draft — Additional Annotated R Code for Figures 10, 11, and 13
(Including labels, colored reference lines and tick marks, etc. Nice for publication. Optional for students.)

Code for Figure 10

set.seed(1)  # remove this line for simulation different from that shown
n <- 2500;  m <- 20;  p <- .53
plot(c(-.1*n,1.1*n),c(.5, .5), type="l", col="green", lwd=2,
 xlim = c(n-100,n), ylim=c(p-.05,p+.04),

ylab="Proportion", xlab="Number of Subjects",
main="Close-up View of Endpoints: 2500-Subject Polls")

lines(c(n,1.1*n),c(p-.02,p-.02), col="red", lwd=2)
lines(c(n,1.1*n),c(p+.02,p+.02), col="red", lwd=2)
# set up plot window with green reference line and red tick marks
# xlim and ylim parameters provide close-up of endpoints of paths
for (i in 1:m)

{
x <- sample(0:1, 2500, rep=T, prob=c(1-p,p))  # poll for ith trace
r <- cumsum(x)/1:n
lines(1:n, r)  # plot ith trace
#
}

Code for Figure 11

set.seed(1)
n <- 2500;  m <- 20;  p <- .53
plot(c(p,p), c(1,m), type="l", col="blue",
 xlim = c(.48,.58), ylim=c(1,m),

ylab="Simulated Poll", xlab="Proportion",
main="Confidence Intervals for 2500-Subject Polls")

# plot labels and vertical blue reference line
for (i in 1:m)

{
x <- sample(0:1, n, rep=T, prob=c(1-p,p))  # sample n subjects
est <- sum(x)/n  # point estimate of p
lcl = est - 1.96*sqrt(est*(1-est)/n)
ucl = est + 1.96*sqrt(est*(1-est)/n)
# lower and upper confidence limits
farb="darkgreen"
if (ucl < p | lcl > p) farb="red"     # green if CI covers p, red if not
lines(c(lcl, ucl), c(i,i), col=farb)  # draw lines for conf intervals
}

Code for Figure 13

zz <- seq(.3, .7, by=.001)  # plotting points, horizontal axis
dz.25 <- dnorm(zz, .53, sqrt(.53*.47/25))
dz.2500 <- dnorm(zz, .53, sqrt(.53*.47/2500))
# y-coordinates of normal curves
plot(zz, dz.2500, type="l", lwd=2, ylim=c(0,40), ylab="Density",

xlab="Proportion Favoring 'A'",
main="Comparing Bell Curves for n=25 (blue) and 2500")  # plot tall normal curve

lines(c(.3,.7),c(0,0))  #  draw line for x-axis
lines(zz, dz.25, col=4, lwd=2)  # plot flat normal curve
lines(c(.5,.5),c(-.5,-2), col="green", lwd=3)
lines(c(.51,.51),c(-.5,-2), col="red", lwd=3)
lines(c(.55,.55),c(-.5,-2), col="red", lwd=3)
# tick marks
text(.57,35,"n = 2500")
text(.40,5,"n = 25", col="blue")
# text labels of normal curves


