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Abstract: The one-way random-effect ANOVA model is
presented, and two simulated datasets are analyzed. and
discussed from three points of view: (1) The standard
ANOVA table, F test, and method-of-moments estimates
of variance components, which can lead to negative
estimates. (2) Maximum likelihood estimates of variance
components. (3) Bayesian probability intervals for
variance components based on flat priors and computed
using a Gibbs sampler. Computations are done in R and
WinBUGS. Level and methods are appropriate for
presentation to advanced undergraduate and first year
MS students.
Key Words: Analysis of variance, random effect
model, estimation of variance components, interval
estimates, Bayesian estimation, flat (noninformative)
prior, Gibbs sampler,  teaching, S-Plus / R.

1.  Introduction. A common use of the one-way
random-effect analysis of variance model is in manu-
facturing situations where a product is made in two
stages: first, batches of a precursor are made or
selected; second, the final items are produced and
measured. The central question is often what relative
contributions these two stages make to the observed
variability of the final items.

Examples are batches of concrete cast into
individual concrete beams, which are then tested for
breaking strength, wafers from which individual
computer chips are cut and performance tested, batches
of a precursor protein from which individual doses of a
drug are derived and tested for potency, and plants from
which individual leaves or fruits are selected and
assayed for chemical composition.
The model. Here we consider the balanced model

Yij = µ + Ai + eij,
where i = 1, ..., g batches, j = 1, ..., r replications within
each batch, Ai are independent identically distributed
(iid) NORM(0, σA), and eij are iid NORM(0, σ). Thus
the variance reflected in the measurement of an
individual item is V(Yij) = σA

2 + σ2. We focus mainly
on inferences about the variance components σA

2

(among batches) and σ2 (within batches).

2. Traditional ANOVA. The traditional analysis of
variance tests H0: σA

2 = 0 against Ha: σA
2 > 0. The test

statistic is F = MSB/MSE, where MSB = SSB/dfB,
SSB = rΣi (Y–i. – Y–..)2, dfB = g – 1,  MSE = SSE/dfE,
SSE = Σi Σj (Yij – Y–i.)2, and dfE = g(r – 1). Under H0, the

statistic F = MSB/MSE has the F distribution with dfB

and dfE degrees of freedom and we reject H0 for
sufficiently large values of F.

In practice, H0 is rarely precisely true, so that the
salient issue in testing H0 is by how much the ratio
ψ = σA

2/σ2 must exceed 0 in order for the F test to have
a reasonable chance of detecting that it does exceed 0.
Power. In contrast with the one-way fixed-effect
ANOVA, where power is found using a noncentral
F distribution, the power for a random-effect ANOVA
is found using the (ordinary) F distribution. Specifically,
the power of a test of level α is P{(1 + rψ)F > F*},
where F* cuts off area α from the right tail of the
distribution F(g – 1, g(r – 1)).

Fig. 1.  Power (left) and P{MME(σσσσA2) < 0} for g = 6, 30; r = 5.
Many textbook examples use small values of g to

simplify computation. For α = 5%, g = 6, r = 5, ψ = 0.1,
the power of the F test is P{F > 2.62/1.5} = 16.2%.
Even if ψ = 1, the power is only 81.8%.  [In R:
1 - pf(2.62/6, 5, 24) returns  0.8184741.]  As
shown in the left side of Fig. 1, the power is much better
for a larger experiment with g = 30 and r = 5 (solid line).
Method of moments estimates. In real applications, it is
often more to the point to estimate variance components
than to test H0. Because E(MSE) = σ2 and E(MSB) =
rσA

2 + σ2, the method-of-moments estimators (MMEs)
are MSE for σ2 and (MSB – MSE)/r for σA

2. Unfortu-
nately, the latter estimate takes absurd negative values
whenever it happens that F < 1. If σA

2 is relatively close
to 0, then negative estimates are more than a theoretical
possibility as shown in the right side of Fig. 1.
Confidence intervals. A confidence interval (CI) for σ2 is
based on the chi-squared distribution with dfE = g(r – 1)
degrees of freedom. For dfE = 120,  the ratio of the upper



Fig. 2. Boxplots for 30 batches of Dataset 1: σσσσA = 25, σσσσ = 15.

Source  DF     SS     MS     F      P

Batch   29  91365   3151  15.0  0.000
Error  120  25215    210

Fig. 3.  ANOVA table for Dataset 1:  F significant.
to lower 95% confidence limits for σ2 can be computed as

qchisq(.975, 120)/qchisq(.025, 120)

which returns 1.66.
No exact confidence interval for σA

2 is known, and
unless g and r are both large enough, the accuracy
of approximate intervals may be in doubt. Also, a
confidence interval based on the method-of-moments
estimate of σA

2 is even more likely to include negative
values than the estimate itself is to be negative.

Furthermore, if the number g of batches is small, then
any correct CI for σA

2 may be so long as to be of no
practical use. For example, with a simple random sample
of size n = 6 from a normal population the ratio of the
upper to the lower 95% confidence limit will be about 15.6
to 1 (for n = 30, about 2.85 to 1). And in a one-way
random effects ANOVA there is the additional compli-
cation that information on σA

2 must be disentangled from
information on σ2. Thus the examples with small g that are
common in textbooks may not be ideal for giving students
an realistic view of the applications of this design.

However, after a little algebra, one can see that an
exact 95% confidence interval for ψ has the form
([F/U* – 1]/r, [F/L* – 1]/r), where F is the F-statistic in
the ANOVA table, and L* and U* are the 2.5% and
97.5% points, respectively, of the F distribution with
degrees of freedom dfB and dfE. Sometimes it is useful to
think in terms of the interclass correlation coefficient
(ICC) ρΙ = σA

2/(σA
2 + σ2) = ψ/(ψ + 1). The confidence

interval ([F – U*]/[F + (r – 1)U*], [F – L*]/[F + (r – 1)L*]) for
ρΙ can be derived from the interval for ψ given above.  [3, 4]

It is natural to estimate µ as the grand mean of all gr
observations, Y–.. = (1/gr)Σi Σj Yij ,  distributed normally
with mean µ and variance (σ2 + rσA

2)/gr . But σ2 + rσA
2

is estimated by MSB, which has dfB = g – 1 degrees of
freedom. Thus the t distribution can be used to obtain
Y–.. ± t*(MSB/gr)1/2 as a 95% confidence interval for µ:,
where t* cuts area 2.5% from the upper tail of the
t distribution with g – 1 degrees of freedom.
3. Two simulated datasets.

In what follows we refer to two simulated datasets,
each with g = 30 and r = 5. Thus there are enough batches
to get stable results with a variety of methods and we have
the advantage of knowing the true parameter values so
we can judge whether our estimates are reasonable.
Printouts of these datasets are available online [5].

Dataset 1, with µ = 1000, σA = 25, and σ = 15, was
generated batchwise, using the default random number
generator in R 2.1.1 with set.seed(1237) and
rounding to integer values.  Fig. 2 shows boxplots of
the g = 30 batches and Fig. 3 shows the ANOVA table
with a very highly significant F statistic. The MMEs are
1003 for µ with 95% CI (994.2, 1012.3);  588.1 for σA

2

(or 24.25 for σA);  and 14.5 for σ with CI (12.87, 16.59).
Dataset 2, with µ = 1000, σA = 1, and σ = 25 was

generated similarly with set.seed(12). Fig. 4 shows
boxplots of the batches. The F ratio in the ANOVA
table of Fig. 5 is far from significant. Here the MMEs
are 1000 for µ with CI (996.4, 1003.7);  negative value
–5.96 for σA

2;  and 23.34 for σ with CI (20.72,  26.72).
Below we look at methods that give similar results

to those above for the “well-behaved” Dataset 1, but
also provide more useful results for Dataset 2, which is
in some respects analytically “badly-behaved.”

Fig. 4.  Boxplots for 30 batches of Dataset 2: σσσσA = 1, σσσσ = 25.

Source  DF     SS     MS     F       P

Batch   29  14931    515  0.95   0.552
Error  120  65362    545

Fig. 5.  ANOVA table for Dataset 2:  F not significant.



3. Maximum likelihood estimators.
Observations from different batches are independent.

For example, Y11 = µ + A1 + e11 and Y21 = µ + A2 + e21 are
independent because A1, A2, e11 and e12 are mutually
independent. However, different observations from
the same batch, say Y11 and Y12, are correlated because
they have A1 in common. Specifically, Cov(Y11, Y12) =
Cov(A1 + e11, A1 + e12) = Cov(A1, A1) = V(A1) = σA

2.
Because Y11 and Y12 both have the same variance
V(Y11) = V(Y12) = σA

2 + σ2, the correlation of these (or
any other) two different observations from the same
batch is ρI = σA

2/(σA
2 + σ2).

require(nlme)

ml.fit <- lme(x ~ 1, random = ~1|s,
   method="ML");  ml.fit

Linear mixed-effects model fit
   by maximum likelihood
  Data: NULL
  Log-likelihood: -654.0247
  Fixed: x ~ 1
(Intercept)
   1003.253

Random effects:
 Formula: ~1 | s
        (Intercept) Residual
StdDev:    23.81335 14.49575

Number of Observations: 150
Number of Groups: 30

Fig. 6.  Maximum likelihood estimates for Dataset 1.

Joint density function. From the results in the previ-
ous paragraph we see that the joint density function
of the observations Yij is multivariate normal of
dimension br:
f(y | µµµµ, V) = (2π)–br/2 |V|1/2 exp[–(1/2)(y – µµµµ)'V(y – µµµµ)],
where y = (Y11, Y12, ..., Y1r, ..., Ybr) and the mean
vector µµµµ has all gr components equal to µ. The gr × gr
correlation matrix C = [1/(σA

2 + σ2)]V is composed of
b2 submatrices, each r × r. Of these submatrices, g2 – g
have all elements 0. But along the principal diagonal of
C are b identical submatrices, each with elements 1
along its principal diagonal and elements ρΙ elsewhere.
Computing MLEs. If the density function f(y | µµµµ, V) is
viewed as a function of µµµµ and V for y as given by the
data, then it is called a likelihood function. The values of
µ, σA

2, and σ2, that maximize this likelihood function are
called the maximum likelihood estimates (MLEs) of
these three parameters of the model. One thing about the
MLE for σA

2 is clear without computation: it cannot be
negative because f(y | µµµµ, V) = 0, except where σA

2, σ2 > 0.
Specifically, the MLE of σA

2 is [(1 – 1/g)MSA – MSE] / r,
provided this quantity is positive; and the MLE of σ is
min[MSE,  SSE + SSB/gr];  see [2].

Fig.6 shows R code (in bold) and output for Dataset 1.
Also,  the additional command intervals(ml.fit)
gives 95% CIs for the parameters. Approximate MLEs
are: 1003 for µ with CI (994.3, 1012.2);  23.81 for σA with
CI (18.14, 31.26);  and 14.50 for σ with CI (12.77, 16.45).
These results are similar to the ones shown earlier for
MMEs, and all intervals easily cover the known true
parameter values. (S-Plus can also find CIs, but the
implementation is a little different; see [5].)

MLEs obtained similarly for Dataset 2 are: 1000 for µ,
0.56 for σA, (as approximated in R), and 23.13 for σ.
However, R does not provide confidence intervals for
this dataset because the sample variance-covariance
matrix is ill-conditioned. This is not surprising: If we
had σA = 0 instead of 1, the dimensionality of the model
would have been smaller.
4. The Gibbs sampler using R. The Gibbs sampler is a
computational method that involves Markov chains and
a Bayesian framework. See [6] for an elementary
general introduction to Gibbs sampling and [1] for the
details of the specific situation discussed in this section.

With brackets denoting density functions in order to
avoid multiple-level subscripts, the joint distribution of
Yij, µ, Ai, τA = 1/σA

2 and τ = 1/σ2 (all random variables in
the Bayesian model) can be written in terms of
conditional distributions as follows [1]:
[Y, A, µ, τA, τ] ∝ [Y|A, τA] × [A|µ, τA] × [µ] × [τA] × [τ].

In the Gibbs sampler we use the flat normal prior
µ ~ N(a1 = 0, b1 = 1010) and the flat conjugate gamma
priors τA ~ GAMMA(a2 = 0.001, b2 = 0.001) and
τ ~ GAMMA(a3 = 0.001, b3 = 0.001). Also, we assign
starting values to parameters: µ = 1500, σA

2 = 1/τA = 1,
σ2 = 1/τ = 1, and Ai = Y–i  = (1/r)Σj Yij.

At step one the data Y and these starting values and
priors are used to generate a value of σA

2 according to
  [σA

2|Y, A, µ, σ2] = [σA
2|A, µ]

 = 1/GAMMA(a2 + g/2, b2 + (1/2)Σi(Ai – µ)2

and a value of σ2 according to
  [σ2|Y, A, µ, σΑ

2] = [σ2|Y, A]
= 1/GAMMA(a3 + gr/2, b3 + (1/2)ΣΣ(Yij – Ai)2.

Next, these values of σA
2 and σ2 are used to generate a

new value of µ
  [µ|Y, A, σΑ

2, σ2] = [µ|σA
2,A]

 = N([a1σA
2 + b1ΣAi] / d1,  b1σA

2
 / d1)

and new values of Ai are generated from [A|Y, µ, σΑ
2, σ2],

or, more simply, as
Ai ~ N([rσA

2/d2]Y–i  + µσ2/d2,  σ2σA
2 / d2)

where d1 = σA
2 + rb1 and d2 = gσA

2 + σ2.
Then recursively, at step n the simulated values

from step n – 1 are used to find the nth value of σA
2. In

each normal distribution used here, the mean can be
viewed as a precision-weighted average of information



from appropriate resampled data and prior, and the
precision (reciprocal variance) can be viewed as a sum of
precisions from appropriate resampled data and prior.

# Assumes g x r matrix Y of observations
m <- 100000  # iterations
b <- m/4     # burn-in

va <- numeric(m); ve <- numeric(m)
mu <- numeric(m); a <- rowMeans(Y)

## Prior parameters, G/S Scenario I
a1 <- 0        # mean of prior on mu
b1 <- 10^(10)  # var of prior on mu
a2 <- .001 # shape of prior on batch var
b2 <- .001 # rate of prior on batch var
a3 <- .001 # shape of prior on error var
b3 <- .001 # rate  of prior on error var

## Initial values of model parameters
mu[1] <- 1500
va[1] <- 1
ve[1] <- 1

for (n in 2:m){
  va[n] <- 1/rgamma(1, a2 + g/2,

b2 + sum((a - mu[n-1])^2)/2)
  ve[n] <- 1/rgamma(1, a3 + r*t/2,

b3 + sum((Y - matrix(a, g, r))^2)/2)
  mu[n] <- rnorm(1, (va[n]*a1 +

b1*sum(a))/(va[n] + g*v1),
sqrt(b1*vb[n]/(va[n] + t*b1)))

  a <- rnorm(g, (r*va[n]*X.bar +
ve[n]*mu[n])/(r*va[n] + ve[n]),
sqrt((va[n]*ve[n])/(r*va[n]+ve[n])))

}

Fig. 7.  R code for our Gibbs Sampler.

The R code to implement this Gibbs sampler is
shown in Fig. 7.  For Dataset 1, the first column in Fig. 8
shows the stability of the point estimates of σA (upper)
and σ, and the second column shows the simulated
densities (after burn in) from which the interval
estimates are obtained. For Dataset 2, the simulated
densities for σA (and thus ρI) are strongly right-skewed.
Diagnostic graphics show that the Gibbs Sampler
is performing properly; see [5]. Bayesian point and
interval estimates obtained from our Gibbs sampler are
shown in Fig. 10. The Gibbs sampler used flat priors, so
it is not surprising that the resulting Bayesian estimates
are in relatively close agreement with the MLEs.
4. Bayesian Results From WinBUGS.

WinBUGS [8] is free software widely used in
Bayesian analysis. We used two parameterizations to
estimate the mean µ, the variance components σA and
σ and the intraclass correlation ρI. The first parameter-
ization is the same as in Section 3, and the second puts
a uniform prior on ρI instead of the flat gamma prior
on τA = 1/σA

2.

An advantage of WinBUGS is that it that the user
does not have to program the partial conditional
distributions as was done in Fig. 7, so that the code is
relatively simple. Fig. 9 shows the code for the second
parameterization, which would have been especially
difficult in R.

WinBUGS results are shown in Fig. 10; those based
on the same parameterization as in Section 3 are very
similar to the results obtained there. (See [5] for more-
detailed results and code for the first parameterization.)

Fig. 8.  Graphics for Gibbs Sampler: Dataset 1.

data
list(batches = 30, samples = 5,
y = structure(.Data =
  c(959, 976, 1015, 1003, 971,
  [28 Batches omitted to save space]
  1000, 987, 979, 1013, 1008),
    .Dim = c(30, 5)))

inits
list(theta=1500, tau.with=1, ICC=0.5)

model  {
for( i in 1 : batches ) {
mu[i] ~ dnorm(theta, tau.btw)
for( j in 1 : samples ) {
y[i , j] ~ dnorm(mu[i], tau.with) } }
theta ~ dnorm(0.0, 1.0E-10)

# prior for within-variation
sigma2.with <- 1 / tau.with
tau.with ~ dgamma(0.001, 0.001)
mu.grand <- mean(mu[])
sigma.with <- sqrt(sigma2.with)
sigma.btw <- sqrt(sigma2.btw)

# prior for ICC
ICC ~ dunif(0,1)
sigma2.btw <- sigma2.with *ICC/(1-ICC)
tau.btw <- 1/sigma2.btw
}

Fig. 9.  WinBUGS Code for Second Parameterization



5. Summary Comments.
We have seen that all methods—MME, MLE, and

Bayesian—give good results for Dataset 1, in which σA
2 is

relatively large. Exact confidence intervals are available
for µ, σ, and ρI  (see Fig. 10).

However, for Dataset 2, in which σA
2 is too small to

detect with a standard ANOVA, the MME is negative.
A standard interpretation of a negative MME is that
σA

2 > 0 is “very small,” but then confidence intervals
for σA

2 or ρI are problematic. (In certain biological
applications a negative value of ρI may be legitimate,
but not for the ANOVA model assumed here, see [4].)
Dataset 2 also illustrates that an ill-conditioned sample
variance-covariance matrix prevents R from finding
confidence intervals for the ML estimates.

For Dataset 2 the Bayesian approach of Section 3
yields reasonable point estimates and interval estimates
that cover the known parameter values. But in practice,
the interval estimates of σA may too long to be useful.
The second parameterization of Section 4 (WinBUGS)
gives less-satisfactory interval estimates for σA and ρI.

Except for Bayes estimates with Dataset 2 based on
this alternative parameterization, all of the methods give
similar results—when they are able to give sensible
results at all. However, this good agreement among
methods may not hold for smaller datasets (typical in
some applications) where there is less information to
help determine the relative sizes of σ and σA.
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Dataset 1
Method µ = µ = µ = µ = 1000 “Among” σσσσA = 25 “Within” σ σ σ σ = 15 ICC = .735

MME (ANOVA) 994 1003 1012 24.25 12.9  14.5  16.6 .610  .737  .845
MLE (R) 994 1003 1012 18.1  23.8  31.3 12.8  14.5  16.5 .729

Bayes  (R, Gibbs) 994 1003 1012 18.9  24.9  33.1 12.9  14.6  16.6 .609  .736  .845
Bayes* (WinBUGS,

MCMC)
994 1003 1013
994 1003 1012

18.8  24.9  33.0
18.6  24.4  32.1

12.9  14.6  16.6
12.9  14.6  16.7

.607  .736  ,844

.600  .727  .836

Dataset 2
Method µ = µ = µ = µ = 1000 “Among” σσσσA = 1 “Within” σ σ σ σ = 25 ICC = .0016

MME (ANOVA) 996 1000 1004 [σσσσA
2 = –5.96] 20.7  23.3  26.7 [–.097 –.011 .137]

MLE ‡ (R) 1000  0.56 23.1 .0006
Bayes (R, Gibbs) 996 1000 1004 .033  1.41  6.63 20.8  23.3  26.1 2 e-6   .009†

 .078
Bayes*(WinBUGS,

MCMC)
996 1000 1004
996 1000 1004

.033  1.28  6.28
   1.01 5.13 10.4**

20.8  23.3  26.1
20.4  22.8  25.7

2 e-6  .008† .070
.002   .07   .17**

 * R-Gibbs results and results in the top row for WinBUGS use flat priors on µ, σA, σ as R-Gibbs; the bottom row of WinBUGS
uses uniform prior on ICC, and flat priors on µ and σ.

 ‡  Because of an ill-conditioned sample variance-covariance matrix, confidence intervals are not available in R.
 †  Means of simulated values after burn-in are shown; the corresponding medians are .0007 (Gibbs), .0005 (BUGS).
** An interval estimate that does not cover the known true parameter value.

Fig. 10. Summary of Results.  Bold numbers are point estimates (when possible, with 95% intervals in plain type.)


