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Abstract: When population variances of observations
in an ANOVA are a known function of their population
means, many textbooks recommend using variance-
stabilizing transformations. Examples are: square root
transformation for Poisson data, arcsine of square root
for binomial proportions, and log for exponential data.
We investigate the usefulness of transformations in one-
factor, 3-level ANOVAs with nonnormal data. Simula-
tions approximate the true significance level and power
of F-tests—with and without various variance-stabilizing
transformations. Findings: logarithmic and rank trans-
formations of exponential data can be useful when the
number of replications is small and the separation in
means is large. Simulation code for Minitab and S-Plus/
R is provided. Classroom use of such simulations in a
second statistics course reinforces concepts of signifi-
cance level and power, encourages exploration, and
teaches computer skills important in the job market.
Key words: Variance-stabilizing transformation; Non-
normal data; square-root / arcsine / log transformations,
simulation, rejection probability; Poisson/ binomial/ expo-
nential data; Minitab/ S-Plus/ R /SAS software, teaching.
1. Introduction.
Background. Consider a one-factor ANOVA model with r
observations on each of t groups: Xij = µi + eij, where eij are
i.i.d. N(0, σ2);  i = 1, ..., t;  j = 1, ..., r. Important assumptions
are (i) normality of the data, and (ii) the same variance σ2

within all t groups.
The goal is to test the null hypothesis that all µi are

equal. To do this, compute the mean squares MS(Factor) =
r Σi (Mi – G)2 / (t – 1)  and  MS(Error) = Σi Vi / t, and F =
MS(Factor)/MS(Error), where  Mi = Σj Xij /r,  G = Σij Xij / rt,
and  Vi = Si

2 = Σj (Xij – Mi)2 / (r – 1). If the null hypothesis
and the assumptions of the model are true, then F has the
distribution F(ν1, ν2) where ν1 = t – 1, and ν2 = t(r – 1).
The null hypothesis is rejected at the 5% level if F > F*,
where F* is the critical value, which cuts 5% of the area
from the upper tail of this F-distribution.
Nonnormal data. In practice one sometimes seeks to test
whether t nonnormal group populations have equal
means µi. In this case the variance σ2 of the distribution
family may be a function of the mean: σ2 = ϕ(µ).
Common examples: Poisson with σ2 = µ, exponential
with σ2

 = µ2, and binomial proportions (based on n trials
and success probability p) with µ = p and σ2

 = p(1 – p)/n.
Then a finding that group means are unequal implies that
group variances are unequal and thus that the model is

invalid not only because of nonnormality but also, and per-
haps more seriously, because group variances are unequal.
Variance-stabilizing transformations. In such a situa-
tion, many textbooks [e.g., 1, 2] recommend use of
variance-stabilizing transformations. By methods of
calculus one can show [3, 4, 5] that the function f with
df(µ)/dµ = [ϕ(µ)]–1/2 stabilizes (approximately equalizes)
variances. Data Yij = f(Xij) are used in computing F and
testing the null hypothesis.

Figure 1: Log Transforms (Right) of Three Exponential
Samples Have Similar Variances

Population means are 1 (Top), 5, and 10; n = 1000.

Specifically, this method indicates the transfor-

mation Y = X 
1/2 for Poisson data, Y = arcsin X 

1/2 for
binomial proportions, and Y = ln X for exponential data.
In particular situations, some adjustments are recom-
mended: For Poisson data that have a large proportion
of 0s, one may use  Y = (X + ½)1/2  or  Y = (X + 1)1/2.
Before transformation, binomial proportions 0 or 1 are
often replaced by 1/4n or 1 – 1/4n, respectively. If
rounding of (inherently positive) exponential obser-
vations results in recording some 0s, then one must add
a small constant to all observations before taking logs.
2. Data Transformations in Practice.
Discovering heteroscedasticity. Sometimes unequal
group variances are revealed by diagnostic devices such
as a plot of the residuals Xij – Mi against the corre-
sponding fits Mi or formal tests of equality of variance
(e.g., Hartley Fmax, Bartlett, or Levene). Then one might
look at ratios such as Mi / Si, Mi / Vi to see if they are
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approximately equal across all t groups and, if so, to
discern what function ϕ may relate µ and σ2.

Sometimes one can confidently guess the family
of distributions from which the Xs may come. Poisson:
counts of accidents, flaws, or contaminating particles.
Binomial proportions: proportion of seeds among 20
placed in each pot that germinate, proportion of culture
plates out of 20 that grow visible bacteria colonies.
Exponential: certain kinds of reaction times, waiting
times, and financial data.
Interpreting transformed data. When one knows or can
reasonably surmise the type of data, the question arises
whether it is useful in practice to transform the data.
The goal is not to achieve a pretty residual plot, but to
make the correct decision. Perhaps doing a
transformation does not change the outcome that
matters—whether or not the null hypothesis is rejected.

Also, if the null hypothesis is rejected for data
transformed as square roots or arcsines of square roots,
then interpretations of multiple comparison procedures
on the scale of the original data can be confusing. For
example, the difference between square roots is not the
same as the square root of the difference. For logged
data, multiple comparisons are easier to interpret:
Differences in logs are logs of ratios.

In fortunate situations, the decision to accept or
reject is the same whether or not data are transformed.
Then one can interpret data on the original scale and
relegate to a footnote the information that a transforma-
tion makes no practical difference. In our experience,
this is often the case. We do not recall having seen
examples based on real data in textbooks or in our
statistical practice where a square root transformation on
Poisson data or an arcsine-of-square-root transformation
on binomial proportions made the difference between
accepting or rejecting the null hypothesis at a reasonable
level of significance.

One may wonder what would be the results of a
poll of a large number of practicing statisticians, asking
about the usefulness of transformations in real-life
situations. But even with the results of such a poll in
hand, one still might wonder whether the proper
distribution families had always been identified and the
“appropriate” transformations made.
Simulation. In the rest of this paper we conduct a num-
ber of “polls” by simulation. For example, we consider a
population of one-factor ANOVAs with t = 3 and r = 5
and where we know the data are Poisson and that there
are no differences among population means. We take a
large sample of m = 20 000 such datasets at random,
and analyze them with and without the square root
transformation. Overall, are we more likely to “discover”
differences that do not really exist (falsely reject the
null hypothesis) when we transform the data—or when
we do not? Then we take another large sample of

Poisson datasets where we know there is a certain
pattern of differences among the groups. Do we detect
these differences (correctly reject the null hypothesis)
more often when we use the original data—or when we
use the transformed data?

A simulation study is better in some ways than
an actual poll of practicing statisticians because we can
take huge samples, we know the data are exactly Poisson,
and we know whether there are differences among groups.
But a simulation study is not true to life in all respects
because real statisticians can only consider the source of
the data and look at the actual numbers to try to guess
whether they are approximately Poisson distributed.

Even so, by doing simulations that are easy to
understand, easy to program with modern software, and
reasonably quick to run on today’s computers, one can
learn a lot about the usefulness of transformations.
Perhaps more important, by following through the
simulation procedure a statistics student will get some
important insights into how computers are currently
used in statistical practice and research.

Display 2: Minitab Code for Poisson Simulations
MTB > name c16 'm1' c17 'm2' c18 'm3' c20 'MSF'
MTB > name c21 'v1' c22 'v2' c23 'v3' c24 'MSE'
MTB > name c25 'F.stat' c26 'Rej1.Acc0'
MTB > rand 20000 c1-c5;
SUBC> pois 10.
MTB > rand 20000 c6-c10;
SUBC> pois 10.
MTB > rand 20000 c11-c15;
SUBC> pois 10.

MTB > stack c1-c15 c30;
SUBC> subs c31.
MTB > let c30 = sqrt(c30)
MTB > unstack c30 c1-c15;
SUBC> subs c31.
MTB > erase c30 c31

MTB > rmean c1-c5 c16
MTB > rmean c6-c10 c17
MTB > rmean c11-c15 c18
MTB > rstdev c16-c18 c19
MTB > let c20 = 5*c19*c19
MTB > rstdev c1-c5 c21
MTB > rstdev c6-c10 c22
MTB > rstdev c11-c15 c23
MTB > let c24 = (c21*c21 + c22*c22 + c23*c23)/3
MTB > let c25 = c20/c24
MTB > code (0:3.8852)0 (3.8853:10000)1 c25 c26
MTB > mean c26

3. Simulations with Poisson Data.
Simulation plan. We run four similar Minitab “pro-
grams” with simulated Poisson data:

(1) Means equal, original data,
(2) Means equal, transformed data,
(3) Means unequal, original data,
(4) Means unequal, transformed data.

In each case we estimate P(Reject) based on the critical
value F(.95, 2, 12) = F* = 3.8853,.
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Refer to Display 2. We start by putting simulated
data into columns c1-c15 of the Worksheet. Each of the
20 000 rows has data for one simulated ANOVA with
Group 1 in c1-c5, Group 2 in c6-c10, and Group 3 in
c11-c15. Notice that in this run all group means are
equal: µ1 = µ2 = µ3 = 10.  (For now, ignore the block of
code in  bold  type.)  Then we use Minitab’s row arith-
metic commands to manipulate the data to obtain
MS(Factor), MS(Error), and the F-statistic. The code
command puts a 1 in c26 if F ≥ F* = 3.8853 (null
hypothesis rejected). The mean of this column, its pro-
portion of 1s, approximates P(Reject | equal means).

This program, and others in this paper, are available
online in digital form [6]. After you run this program
(leaving out the six lines in bold), look at the data in the
first row of c1-c15, and verify the value of F in the first
cell of c25. The program does this same work 20 000
times, once in each row. In Minitab 14, if you use the
command base 1237 before you run the program, you
get the data, and from them the ANOVA table, shown in
Display 3. There F > 0.866 so P > 0.05, and we Accept
the null hypothesis at the 5% level.

Display 3: First of 20 000 ANOVAs, Poisson Means 10
Group 1:  10,  8,  8, 11, 14
Group 2:   9,  5, 13, 11, 10
Group 3:   7, 11, 11,  9,  9

Source  DF     SS    MS     F      P
Factor   2   1.73  0.87  0.15  0.866
Error   12  71.20  5.93
Total   14  72.93

Based on all 20 000 rows in this run, we obtain
P(Reject) ≈ 0.0487. Several additional runs give very
similar results. The margin of error of this result is
about 1.96 [.0487(1 – .0487) / 20 000]1/2 = 0.003. Even
though the data are not normal, the standard ANOVA
procedure rejects the null hypothesis about 5% of the
time when the Poisson populations have a common
mean of 10. The 5% value also holds in other cases: for
example, when µ1 = µ2 = µ3 = 3.

The lines of code in bold type in Display 2 stack
all 15(20 000) = 300 000 simulated observations into c30
where square roots are taken. Then the information in
c31 permits the transformed data to be “unstacked” to
replace the original data in c1-c15. A run of the entire
program in Display 2 estimates P(Reject) ≈ 5% for the
transformed data. (Again for transformed data, we get a
similar value when the group means are all equal to 3.)
We conclude that the transformation does not make an
important change in P(Reject | equal means).

By changing the three identical means 10 at the
beginning of the program to 10, 15, and 20, respectively,
we can approximate the power of the test against the
alternative µ1 = 10, µ2 = 15, µ3 = 20. With or without
transformation, we get P(Reject | 10, 15, 20) ≈ 0.91.

With a variety of other sets of unequal µi, we get
different values for the power from one set to the next.
But we see very little difference, if any, between results
with and without transformation. When means are small
enough to yield large numbers of 0 values, we use
transformations Y = (X + 0.5)1/2 and Y = (X + 1)1/2,
without seeing any change in results. (A tabulation of
rejection probabilities, with and without transformation
for various patterns of means is available online [6].)

In summary, within the limited scope of our simula-
tions on small balanced one-factor ANOVAs, we find no
instance in which a square-root transformation of Poisson
data substantially alters the probability of rejection.
4. Simulations with Binomial Data.
Suppose that the data are binomial proportions based on
n = 10 trials. Slight modifications of the code of Sect. 3
can be used to investigate the usefulness of the trans-
formation Y = arcsin X 

1/2. Recall that E(X) = µ = p, for
a binomial proportion X with success probability is p.
Because V(X) = p(1 – p)/n does not vary much for p
between 0.3 and 0.7, we choose values of p that might
yield meaningfully different variances.

Display 4 shows the changes to simulate P(Reject)
for original (untransformed) proportions where µ1 = 0.1,
µ2 = 0.25, and µ3 = 0.4. (We stack the data into c30 to
change counts to proportions.)  Subsequently, for the
“arcsine” transformation, the line
MTB > let c30 = asin(sqrt(c30/10))

replaces the bold line in Display 4.

Display 4: Command Changes for Binomial Proportions
...
MTB > rand 20000 c1-c5;
SUBC> bino 10 .1.
MTB > rand 20000 c6-c10;
SUBC> bino 10 .25.
MTB > rand 20000 c11-c15;
SUBC> bino 10 .4.
MTB > stack c1-c15 c30;
SUBC> subs c31.
MTB > let c30 = c30/10
MTB > unstack c30 c1-c15;
SUBC> subs c31.
MTB > erase c30 c31
...

We find that P(Reject | .1, .25, .4) ≈ .82 and
P(Reject | .2, .2, .2) ≈ .05, with or without the “arcsine”
transformation. We also find that rejection probabilities
are not changed substantially by the logistic transfor-
mation Y = ln [X / (1 – X)], where values of X near 0 or 1
are fudged slightly to lie inside (0, 1).  Add the line
MTB > code (0).025 (1).975 c30 c30

just after “stacking” the data to do the fudging.
Again here, within the limited scope of our simu-

lations on small balanced one-factor ANOVAs (detailed
in [6]), we do not find evidence that these transforma-
tions are useful in practice. Specifically, we find no
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instance in which either an “arcsine” or a logistic
transformation substantially alters rejection probabili-
ties when the data are binomial proportions. As we see
in Sect. 5, the situation is considerably different for log
and rank transformations of exponential data.

5. Simulations with Exponential Data.
In order to investigate log transformations on exponential
data, the only changes necessary in the code of Display 2
are to change pois to expo where the random obser-
vations are generated and sqrt to loge in the third
bold line. So we take this opportunity to introduce code
to do simulations in R.
A program in R. Display 5 shows the required R code.
Here is a brief explanation of what it does. Additional
information on each function can be obtained by
typing a ? followed by a space and the function name
into the R Console window (or looking ahead to the
next subsection, in the Commands window of S-Plus).

The program is written so that the number r = 5 of
observations per group, the group population means, and
(within limits of allocated memory space) the number m
of ANOVAs simulated are easy to change, but it would
have to be rewritten to change the number t = 3 of
groups. Object names imitate the notation of Sect. 1.

Display 5: R Code for Exponential Simulations
r <- 5;  m <- 20000
mu1 <- 10;  mu2 <- 10;  mu3 <- 10
mu <- c(rep(mu1,r), rep(mu2,r), rep(mu3,r))
x <- rexp(3*r*m, rate=1/mu)
DTA <- matrix(x, m, byrow=T)
#DTA <- log(DTA)

# Activate line above for log transf.
#DTA <- t(apply(DTA, 1, rank))

# Activate line above for rank transf.
m1 <- rowMeans(DTA[,1:r])
m2 <- rowMeans(DTA[,(r+1):(2*r)])
m3 <- rowMeans(DTA[,(2*r+1):(3*r)])

v1 <- rowSums((DTA[,1:r] - m1)^2)/(r-1)
v2 <- rowSums((DTA[,(r+1):(2*r)] - m2)^2)/(r-1)
v3 <- rowSums((DTA[,(2*r+1):(3*r)] - m3)^2)/(r-1)
g <- (m1 + m2 + m3)/3
MSF <- r * rowSums((cbind(m1,m2,m3) - g)^2)/2

MSE <- rowMeans(cbind(v1, v2, v3))
F.rat <- MSF/MSE
rej <- (F.rat > qf(.95, 2, 3*(r-1)))
mean(rej)

The vector mu has 3r = 15 elements. It is "recycled"
m times as the function rexp simulates the vector x of
3rm exponential observations. The contents of x are
reformatted (reading across rows) into an m × 3r matrix
DTA, so that each row of this matrix contains data for
one of the m simulated ANOVAs. If printed out, the
matrix DTA would look very similar to columns c1-c15
of the Minitab worksheet considered above.

Brackets [ ] denote the elements making up a sub-
vector or submatrix. Here, three ranges of column indices

are used to break the large matrix DTA into three m × r
submatrices, each corresponding to one of the groups.
Column vectors such as m1 and v1 have m elements each
of group sample means and variances, respectively. The
function cbind combines column vectors into a matrix.
The m-element column vector rej is a logical vector with
entries T or F, where T indicates that the F-test rejects the
null hypothesis (of equal group population means) for the
ANOVA in a particular row, and F indicates acceptance.
The mean of this vector gives the proportion of Ts it
contains, and so mean(rej) simulates P(Reject).

Table 6: Rejection Probabilities for Nominal 5% Level Tests
Log and Rank Transformed Exponential Data in One-Factor ANOVAs

(Where 3 decimal places are shown, the last digit may be ±2.)
Transformation

Group Means None Log Rank
r = 5

10, 10, 10
1, 2, 4

1, 5, 10
1, 10 ,10
1, 10, 100

0.040
0.24 
0.39 
0.34 
0.76 

0.046
0.28 
0.65 
0.76 
0.986

0.056
0.31 
0.68 
0.78 
0.985

r = 10
10, 10, 10

1, 2, 4
1, 5 ,10

1, 10, 10

0.043
0.59 
0.87 
0.86 

0.047
0.54 
0.94 
0.976

0.052
0.60 
0.976
0.991

Lines beginning with #-signs are ignored when
the code is executed. Thus, a log transformation can be
performed by removing one #-sign, and a (more time
consuming) rank transformation can be done by
replacing that #-sign and removing another. (If no
allowance were made for doing rank transformations,
the program could have been written—perhaps a little
more transparently for beginners—with three separate
data matrices, one for each group. The result of using
apply on the rows, designated by 1, of DTA with the
rank function yields a column vector of ranks for each
row, hence the need for the transpose function t.)
Also in S-Plus. The same code can be run in S-Plus, but
then the function rowVars could be used to make slight
simplifications, so that the four lines
v1 <- rowVars(DTA[ , 1:r])
v2 <- rowVars(DTA[ , (r+1):(2*r)])
v3 <- rowVars(DTA[ , (2*r+1):(3*r)])
MSF <- r*rowVars(cbind(m1, m2, m3))

can replace the bolded lines of Display 5.
Results for log and rank simulations. In addition to log
transformations, we consider rank transformations,
where each of the tr observations is replaced by its rank.
While rank transformations are often considered a cure
for nonnormality, they also restrict the range of
transformed data and hence diminish the opportunity
for variances to be grossly different. (Exponential data
can take arbitrarily large values, but their ranks must
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take values between 1 and tr.)  Because rank transfor-
mations sometimes work better for larger amounts of
data, we consider ANOVAs with r = 10 as well as r = 5
replications in each of t = 3 groups.

Table 6 shows some simulation results for log and
rank transformations on exponential data. The nominal
significance level is 5%. Each value in the table is an
average based on 10 runs of m = 20 000 iterations each.
Tests using the log transformations tend to have slightly
smaller than the nominal 5% significance level. Tests
with the rank transformations seem to result in slightly
inflated significance levels, and consequently slightly
better power.

For exponential data, both log and rank transfor-
mations can be beneficial when the sample size is small
and the separation of group means is great. In particu-
lar, when there are t = 3 groups with r < 10 replications,
we show some cases where the power is greatly im-
proved by their use. (See Table 5 and Figures 7 and 8.)
However, the lower panels of Figures 7 and 8 show
situations in which it seems best not to transform the
data—situations in which the power with original data
is greater than the power with transformed data. (Also
note the one bold entry in Table 6.) In the figures, each
plotted point is based on m = 20 000 simulated datasets.

Figure 7: Power at Various Sample Sizes
Log and rank transformation work best when r is small

and population means are widely separated.
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Figure 8: Power Against Various Alternatives
When M = 1, H0 is true; when M = 2, the group means are 1, 2, 4;

 and  when M = 4, the group means are 1, 4 , 16; etc.
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