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Abstract:

Statistics  instruction  for  the  current  job  market  must
include  both  theoretical  principles  and  modern  com-
puter  methods.  Combining  these  objectives,  we  use
numerical and graphical output from computer simula-
tions  to  illustrate  principles  of  evaluating  estimators
(e.g.,  bias,  MSE).  Main  example: properties  of  the
range  of  a  small  normal  sample  as  an  estimator  of
population standard deviation (used in industrial control
charts).  Software: S-Plus, R, Minitab.  Level: Introduc-
tory  engineering  statistics  through  first-year  graduate
mathematical statistics. 

1. Introduction

Advances in computer hardware and statistical software
continue  to  change  statistical  practice.  Employers
expect graduates of statistics programs to have a variety
of  computational  skills  in  addition  to  a  solid  back-
ground in statistical theory and methodology. Statistics
educators have responded to this expectation by adding
software-oriented courses to statistics programs and by
integrating  computer  methods  for  data  analysis  into
basic applied courses and courses on methodology.

In  theoretical  textbooks,  various  authors  have  also
shown the importance of computational methods. Nota-
ble examples are Feller  (1957),  Lindgren  (1962),  and
Rice (1995). These uses of computation can go beyond
data  analysis  to  illuminate  traditional  principles  and
explore new methods of modeling and inference.

We believe that computational methods should play
an  increasingly  important  role  in  theoretical  courses.
Here  we illustrate  simulation methods that  are essen-
tially parametric bootstraps to investigate properties of
estimators of variability. To facilitate classroom use we
include S-Plus computer code and suggest some simu-
lation projects and theoretical exercises for students.

While we have found that S-Plus and R are conven-
ient software packages for the kinds of computation we
do  in  mathematical  statistics  courses,  most  of  the
examples  in  this  article  could  be  restructured  for
Minitab. The results in this paper have been computed 

using S-Plus 2000 (Release 2) running under Windows,
but the code we show would run in R with little or no
modification. R has the advantage of being free. 

2. Biases and Mean Squared Errors of 
Variance Estimators

We begin with a summary of facts about estimating the
variance  of  a  normal  population.  Depending  on  the
level of the course, students might be asked to provide
analytic  proofs of all,  some, or none of these results.
Our purpose here is to illustrate these results by simu-
lating some of the quantities involved.

Let X1, X2, ..., Xn be a random sample from a normal
population with unknown mean  and variance  . The
maximum likelihood estimator of  is

nQnXX iM //)(ˆ  .

Because  Q/ is  distributed  CHISQ(n – 1),  we  have

E(Q/n)  =  n – 1  and  )ˆE( M =  [(n – 1)/n],  so  that

M̂  is a biased estimator of  ,  and the bias is more

serious  for  smaller  sample  sizes.  The  unbiased

estimator  U̂ =  Q/(n – 1)  is  commonly  used  in

practice.
One criterion for the “goodness” of an estimator ̂

of a parameter   is that it have a small mean squared
error

MSE() = E[( ̂ –  )2] = )ˆV( – 2)]ˆ([ b ,

where  )ˆ(b =  )ˆE( –   is  the  bias.  Among

unbiased estimators of   (for  which  )ˆ(b = 0),  one

can show that U̂  has the smallest variance—that is, it

is UMVUE. Mathematical statistics courses often dwell
on the elegant theoretical results for finding UMVUEs.
However, in estimating , 

)ˆMSE( U  = )ˆV( U > )ˆMSE( M .

Furthermore, among constant multiples (in n) of Q, the

smallest  MST  is  achieved  by  A̂  = Q(n – 1).  (See

Lindgren, 1962).

The S-Plus script below simulates  m = 50,000 sam-
ples  of  size  n = 5  from  a  normal  population  with



(arbitrarily)  mean   = 150 and standard deviation   =
–1/2 = 10, in m rows and n columns of the matrix Dta.
Each row of the matrix is considered as a sample of size
n.  (The  function  rnorm simulates  a  vector  of  mn
independent  observations  from the desired population
and matrix formats the vector into an m  n matrix.)
Then  we  find  m-component  column  vectors  of

observations from  U̂ ,  M̂  and  A̂ .   Finally,  we

compute sample means and MSEs of these vectors. For
our  purposes,  these  simulated  values  adequately
approximate  the  corresponding  theoretical  ones.  As

shown below, we obtained  )ˆMSE( U  5003.439 =

5.00,  )ˆMSE( M   3.61,  and  )ˆMSE( M 
3.34.

 m <- 50000;  n <- 5
 mu <- 150;  sigma <- 10; theta <- sigma^2
 x <- rnorm(m*n, mu, sigma)
 Dta <- matrix(x, nrow=m, ncol=n)
 th.u <- rowVars(Dta)
 mean(th.u);  mean((th.u-theta)^2)
 th.m <- ((n-1)/n)*th.u
 mean(th.m);  mean((th.m-theta)^2)
 th.a <- (n/(n+1))*th.m
 mean(th.a);  mean((th.a-theta)^2)

 > mean(th.u)            > mean(th.m)
 [1] 99.83805            [1] 79.87044
 > mean((th.u-theta)^2)  > mean((th.m-theta)^2)
 [1] 5003.493            [1] 3607.418

 > mean(th.a)
 [1] 66.5587
 > mean((th.a-theta)^2)
 [1] 3342.083

See Fig.  1 for histograms of the simulated distribu-
tions of these three estimates of  .  Sample code:

hist(th.u[th.u<400], nclass=30, 
  xlab="Q/(n-1)).

These  distributions  are  severely  right-skewed,  so
MSE is minimized for  a more extremely negatively

biased estimator  A̂  than may be desirable in some

applications. Also the population standard deviation is
often estimated by taking the square root of one of these

estimators. Used in this way even  U̂  gives a nega-

tively biased estimate of s, as we see in the next section.

Technical  notes. We  used  set.seed(1212) for  the
run shown above. If you use the same seed and soft-
ware  we  did,  you  will  get  exactly  the  same  results.
Other  simulation  runs  give  similar  results.  Larger
values  of  m give  better  approximations.  In  R:  for
rowVars(Dta) substitute  apply(Dta, 1, var),
which also works in S-Plus but more slowly.

Suggested student exercises

 1.   Change  the  program  above  to  include  the
estimator Q/(n + 2), for which the approximate MSE
is  3.5.  This  provides  a  rough  indication  that  the
denominator n + 1 gives the smallest MSE.
 2.   Compare the simulated quantiles of Q/ with the
exact quantiles of CHISQ(n – 1). Code:

probs <- c(.025,.25,.5,.75,.975)
((n-1)/theta)\,*\,quantile(th.u,\,probs)
qchisq(probs,\,n-1)

 3.   Use the simulated quantiles  of the distribution of

U̂  to make an approximate 95% confidence interval

for   based on five observations that give  U̂  = 89.1.

This is one kind of nonparametric bootstrap confidence
interval (see Rice, 1995). Compare your result with the
95% conficence interval based on the exact distribution

of U̂ .

 4.   Which of the estimators U̂ , M̂  and A̂  has

the  smallest  mean  absolute  error,  defined  as
?|)ˆ(| E

 5.   Repeat  the  main  simulation  and  selected
exercises for n = 4, 6, and 10.
 
2. Estimators of Standard Deviation

In some industrial applications where the sample size
n  is  small,  it  is  customary  to  estimate  the  standard
deviation   of  a  normal  population  by  a  suitable
multiple  of  the  sample  range  R rather  than  by  the

sample  standard  deviation  S =  2/1ˆ
U .  One

particularly common use of range-based estimates of
 is  in  control  charts.  Here  we  use  simulation  to
show  that  such  estimates  are  reasonable  for  small
sample sizes.

Usually  the  constant  Kn is  chosen  so  that  RU =
R/Kn is an unbiased estimator of . 


