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Abstract

Certification that a country, region or state is “free” from a disease has implica-

tions for trade in animals and animal products. We develop a Bayesian model for

assessment of (i) the probability that a country is disease “free” (or infected), (ii)

the proportion of infected herds in an infected country, and (iii) the within-herd

prevalence in infected herds. The model uses test results from animals sampled in a

two-stage cluster sample of herds within a country. Model parameters are estimated

using modern Markov-chain Monte Carlo methods. We demonstrate our approach

using published data from surveys of Newcastle disease and porcine reproductive

and respiratory syndrome in Switzerland, and for three simulated data sets.
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1. Introduction

To facilitate animal and animal-products trade, veterinary authorities in a

country (region, etc.) might try to provide evidence that livestock popula-

tions are free from important infectious agents. Countries might have ”always

been free” of a pathogen based on years of negative disease surveillance data or

might have eradicated the agent recently. Historic evidence of freedom from in-

fection might be based on criteria such as lack of clinical disease for a specified

period of time, cessation of use of vaccines that might disguise the condition,

no positive diagnoses at local diagnostic laboratories, and (often) some test-

based survey or surveillance data. Formal incorporation of this evidence into

the analysis would be useful for making inferences about a country’s status

regarding to a particular pathogen. In addition, the risk of pathogen intro-

duction can vary geographically depending on the extent of animal contact

and/or movement of animal or animal products within and between neighbor-

ing regions or countries. This factor might also warrant consideration when

data are analyzed.

To provide the necessary assurance of freedom from infection (or a prevalence

below a defined threshold), most countries will conduct a national survey using

internationally recognized diagnostic tests on a large sample of animals. These

surveys could be based on samples collected at slaughter or on testing of live

animals in herds. In the latter case, the testing generally would be performed

using a two-stage cluster-sampling scheme with the selection of k herds and

then a random sample of n animals (the selection could be age-specific or

focused on high-risk groups) from each herd. The sample size (n) is often the
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same from herd to herd, but it could vary based on formulas designed to adjust

for the total herd size.

Serologic tests typically are used in national surveys because they are inex-

pensive, and are rapid and easy to perform. However, such tests will always

have imperfect sensitivity and specificity. Thus, a survey that resulted in only

a few reactors (positive test results) does not imply infection.

Criteria for assessment of disease freedom have been suggested by Baldock

(1998) and a frequentist approach to the analysis of two-stage cluster sam-

pling designs incorporating imperfect test sensitivity and specificity has been

developed by Cameron and Baldock (1998). As an alternative analytic ap-

proach, Audigé and Beckett (1999) developed a stochastic simulation model

that allowed for the incorporation of uncertainty in input parameters through

the use of probability distributions. They used the magnitude of the likelihood

ratio as an indicator of country-level infection. Recently, Audigé et al. (2001)

updated the model to incorporate uncertainty in the likelihood ratio and prior

probability of country-level infection.

In this paper, we use a Bayesian approach to model test results from a two-

stage cluster sample. Our main objective is to extend the work of Audigé

and Beckett (1999) and Audigéet al. (2001) to an all-encompassing model

for diagnostic-test data from herd-level testing that will be useful for mak-

ing inferences about infection status at three levels – the country, the herd,

and within the herd. The model has been implemented in Fortran90 (Digi-

tal Equipment Corporation, 110 Spit Brook Road, mail stop ZKO2-3/N30,

Nashua, New Hampshire, 03062-2698) and the prior and posterior analyses

are performed in R (Free Software Foundation, Temple Place - Suite 330,
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Boston, MA 02111-1307, USA). We illustrate this modeling approach using

survey data from Switzerland for Newcastle disease (ND) virus and porcine

reproductive and respiratory syndrome (PRRS), and for three simulated data

sets.

We begin by discussing the formulation of our model for disease freedom in

Section 2. In our model we assume individual-test results are available for

each animal from a two-stage cluster sample and assume an equal sample size

(n) within herds. In Section 3, we explain the Bayesian approach to inference.

In Section 4, we present results for real survey data and for simulated data

examples. Finally, we give our conclusions in Section 5.

2. Model

Our model assumes that the diagnostic-test results from a herd-level cluster

sample are available. This sampling scheme is used to produce data by ran-

domly selecting k herds (clusters) from the population of herds in a country,

and then, within herd i, ni animals are selected randomly and tested. We

assume the herd size is large relative to ni. We also assume the diagnostic

test used to detect the pathogen in question is not perfect; either the test

sensitivity (η = P (+|I)) or specificity (θ = P (−|Ī)) or both are < 1 (where I

indicates a truly infected animal and + indicates a positive test result).

Our primary goal is to assess the probability that an animal population in a

country is “free” from a specific pathogen (i.e. that the prevalence is either

zero or so small that it is of no practical relevance). To model the country-level

infection status, we let Z = 1 if the animal population is infected and Z = 0
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otherwise. Let γ = P (Z = 1), so that (1− γ) is the probability the country is

“free” of the pathogen.

The prevalence of infection within each herd is also of interest – as is the av-

erage prevalence among the infected herds. The prevalence of infection within

the ith herd (λi) is defined as the prevalence of infection in the population from

which the ith herd was sampled. We assume two conditions – either infected

or non-infected – exist under which the ith herd can be selected; and hence,

each of the k herds is drawn randomly from one of these two populations.

If the ith herd is sampled from the infected population, we define πi as the

within-herd prevalence of the infection. We also assume that the prevalences

(πi) in infected herds vary. The actual prevalence for herd i (πi) is assumed to

be drawn from a beta(α, β) distribution where the unknown parameters (α, β)

determine the average prevalence of infection (µ = α/(α+β)) among infected

herds and also how variable these prevalences are about the mean. The pro-

portion of infected herds (i.e. or herd-level prevalence) is assumed to be τ

and thus the ith herd is assumed either to have prevalence πi with probability

τ or prevalence zero with probability (1 − τ). Thus, we define λi to be the

prevalence of infection in the population from which the ith herd is sampled,

as:

λi = πi with probability τ

= 0 otherwise.

It follows that λi and λj, i �= j, are independent conditional on the vector of

prevalences π = [π1, π2, ..., πk]
′, and τ .

At the herd level, we model the true infection status using latent data {ti : i =

1, ..., k}, where each ti is an indicator of the ith herd’s true infection status.
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Thus each ti is a Bernoulli random variable with probability τ ,

ti|τ ∼ Ber(τ).

This leads to the equality (λi = πiti) which implies that if the ith herd is

infected (ti = 1), then λi = πi. Finally, we note if a herd is infected (i.e.

ti = 1), then the country is infected also; thus, Z = 1.

We define additional latent data for the ith herd that identifies the true

infection-status of each animal tested. The latent data {vij : i = 1, ..., k, j =

1, ..., n} are a group of indicator variables where vij = 1 if the jth animal

in the ith herd is infected and vij = 0 if it is not infected. The conditional

distributions of the vij’s are independent and distributed as Bernoulli,

vij|Z = 1, ti = 1, πi ∼ Ber(πi).

If a herd is not infected, then each individual animal in the herd is not infected

by definition; i.e. vij = 0|ti = 0, with probability one. Also, for a non-infected

country, each animal is not infected; vij = 0|Z = 0, with probability 1. Finally,

an important feature of this model is that its structure incorporates correlation

in the true infection status between animals (j and j′, j �= j′) within the ith

herd:

Corr(vij, vij′) =
(1 − τ)πi

1 − τπi

≥ 0.

However, the model leaves the true infection status of different animals in

separate herds (i and i′) independent.

The data available for our model are the individual-animal test results from a

two-stage cluster sample of herds within a country. The data are represented

as {Xij : i = 1, ..., k, j = 1, ..., ni}, where Xij = 1 if the jth animal within
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the ith herd tests positive and Xij = 0 if the animal tests negative. For each

herd, we can collectively represent the data as {(Xi, ni) : i = 1, ..., k}, where

Xi =
∑

j Xij. Therefore, the Xij’s denote the outcomes for each individual-

animal’s test result, and the Xi’s give the total number of animals within each

herd that test positive for the pathogen.

The individual-test results for each animal within a herd are assumed to be

Bernoulli random variables with probability of testing positive that depends

on the country’s infection status, the within-herd level prevalence, λi, and the

test parameters η and θ. The conditional distribution of Xi – given Z = 1, λi,

η, and θ – is binomial because each animal is assumed to be selected randomly

within a herd. Specifically, we model the results for the ith herd in an infected

country as

Xi|Z = 1, λi, η, θ ∼ Bin (ni, λiη + (1 − λi)(1 − θ))

and

Xi|Z = 0, θ ∼ Bin (ni, (1 − θ)) .

Regarding the individual-test results, we assume that the outcomes are inde-

pendent and Bernoulli, conditional on the infection status of the country, the

infection status of the animal tested, and the test parameters, namely

Xij|Z = 1, {vij}, η, θ ∼ Ber(ηvij(1 − θ)(1−vij)) (1)

and

Xij|Z = 0, θ ∼ Ber(1 − θ). (2)
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The model parameters are summarized in Table 1. A flow chart showing the

levels that are modeled with latent data and their relationship to the data

collected is presented Figure 1.

3. The Bayesian Approach

We require prior distributions for the unknown model parameters and the joint

distribution of these parameters in conjunction with the latent data used in the

model. Independent beta priors are assumed for the model parameters µ, γ, τ ,

η, and θ, and an independent gamma prior for α + β. In general, for a generic

parameter ν we use the notation ν ∼ beta(aν , bν) to specify its beta prior

distribution. Suppose ν is a model parameter for which a beta(aν , bν) is to be

selected. For the parameter ν, three questions are asked of an expert familiar

with the country’s animal population and the specific animal pathogen:

(1) What do you believe is the most-likely value of ν? This value is chosen

to be the mode of the corresponding beta prior.

(2) What is your 5th percentile of the possible values of ν? (e.g. you are 95%

certain that ν exceeds what value?)

(3) What is your 95th percentile of the possible values of ν?

Answers to these questions are used to obtain the prior density for ν. If the

most-likely value of ν is < 0.50, the mode and the 95th percentile are used

(and if it is > 0.50, the mode and the 5th percentile are used) to determine

the parameters (aν , bν). Only one of the percentiles is used because the beta

density is not symmetric in these two cases. If the mode is chosen to be 0.50,

we use both percentiles because the prior will be symmetric. Finally, for the
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selected prior density, we calculate 95% prior intervals for comparison with

the 95% posterior intervals that are calculated from the posterior densities.

The prior distributions on the parameters (α, β) are derived using informa-

tion from an expert about the average within-herd prevalence in the in-

fected herds ( µ = E[πi|ti = 1] = α/(α + β) ) and the standard deviation

( σ =
√

µ(1 − µ)/(α + β + 1) ) of the possible prevalences among infected

herds. In the simplest example, a prior guess for µ might be 0.30; that is,

the expert’s best guess for the average prevalence among herds is 30%. The

expert might also be confident that 95% of all prevalences are within 10% of

his/her best guess for µ, which implies a guess that σ ≈ 0.05 (assuming the

distribution of prevalences is approximately symmetric) one then could solve

the equations µ = 0.30 and σ = 0.05 for the expert guesses for α and β. Our

approach is more complicated than this, but the basic idea is conveyed by this

illustration. The exact derivation of the priors is given in Appendix A.

The distributional assumptions for the three sets of latent data ({vij}, {ti},
and {πi}) were presented in the previous section. These – in conjunction with

the distributional assumptions for the data in (1) and (2) and the prior dis-

tributional assumptions given here – result in the joint distribution (given

in Appendix B) of all of the quantities. This is used to obtain the so-called

“full conditional posterior distributions,” which are sampled iteratively in a

process called “Gibbs sampling” (Appendix C). The Gibbs sampler is used

to simulate a Monte Carlo (MC) sample of values from the joint posterior

distribution (Gelfand and Smith, 1990; Casella and George, 1992; Gelman et

al., 1995; Tanner, 1996). The sampling is conditional, because each sampled

value depends on the data (X = {Xij}), and on the previously sampled values

of the parameters and latent data.
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The Gibbs sampler for our model results in the MC sample {v(h)
ij }, {t(h)

i },
{π(h)

i }, α(h), β(h), Z(h), γ(h), τ (h), η(h), and θ(h): h = 1, ..., N , which is obtained

in this order. Initial values are chosen for all parameters and the latent data.

(We use the means of the corresponding prior distributions as initial values of

the parameters.) We specify the initial values for the latent data as the test-

result values as if sensitivity and specificity were perfect. For each iteration (h)

the sampling within the iteration depends on the previously sampled values.

For example, v
(h+1)
ij is sampled conditional on the data X and on the most-

recent values of the other variables. Next, t
(h+1)
i is sampled conditional on the

same collection and now also on {v(h+1)
ij }. During each iteration, all of the

values are sampled – producing a dependent chain of MC samples for each

parameter and for each latent data value.

The Bayesian posterior analysis is performed by plotting smoothed histograms

of the sampled values for particular parameters as estimates of the posterior

densities. MC sample modes and means are used as point estimates and pos-

terior (credible) intervals are calculated as the 0.025 and 0.975 percentiles of

the corresponding MC sample values for each parameter. In all of the anal-

yses presented in this paper, 200,000 iterations of the Gibbs sampler were

generated and the last 50,000 iterations were used to estimate the posterior

distributions.

4. Illustrations

In this section, we present results of our Bayesian analysis for two data sets

previously evaluated by other authors. We analyze survey data that were col-

lected in Switzerland to assess freedom from Newcastle disease virus in poul-
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try (Gohm et al., 1999) and porcine reproductive and respiratory syndrome

in swine (Audigé et al., 1997; Canon et al., 1998). We also present the results

of three simulated data sets.

4.1. Survey data

4.1.1. Newcastle disease

During 1996, blood samples were collected from a central poultry slaughter-

house in Switzerland to assess the status of Newcastle-disease (ND) virus in

the country. Samples were collected from k = 260 flocks with n = 30 birds per

flock. Sample sizes were based on the assumption that at least 1% of flocks

were infected and within-flock prevalence was at least 10%. Serum samples

were tested for ND antibodies by ELISA. Upon initial inspection of ELISA-

test results, four flocks had test results consistent with a high likelihood of

infection (22, 14, 10, and 10 positive samples out of 30). The remaining 256

flocks had 3 or fewer positive test results (3 flocks with 3 positives, 9 flocks

with 2 positives, 50 flocks with 1 positive, and 194 flocks with 0 positives).

The priors were elicited from Dr. Laurent Audigé (a coauthor of the original

study) to reflect his uncertainty in the model parameters for ND virus, and

are given in Table 2. The parameters selected for the prior distributions were

chosen to best fit the prior information given in terms of the prior mode, the

lower 5th percentile value and the upper 95th percentile. A prior on γ was

chosen having mode 0.20 and the prior mode for the herd-level prevalence

(τ), was chosen to be 0.01. These modes along with input for the 5th and

95th percentiles were used to find the best-fitting beta priors. The indepen-
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dent gamma priors for the parameters α and β were derived from the prior

information about µ and σ. A beta prior on µ was chosen with a mode of 0.30.

Also given in the Table 2 are the 95% prior intervals, means, and standard

deviations for comparison with the posterior analysis.

The posterior analysis based on the simulated MC samples produced by the

Gibbs sampler for model parameters is presented in Table 2. The survey results

provide evidence that the country’s poultry population was infected with ND

virus. The indicator of the infection in the country resulted in a posterior prob-

ability of P (Z = 1|data) = 1. Because the results indicate that the country

is infected, inferences about the flock prevalence and within-flock prevalences

are presented. E.g., the posterior estimate of the flock-level prevalence (τ) is

0.018 with a 95% posterior interval (0.007, 0.035). The posterior estimate of

the probability that the country is infected (γ) is 0.301 with corresponding

interval (0.100, 0.611) Two plots are included to show the updating of the

prior distributions. In Fig. 2, the prior and posterior distributions of the mean

prevalence of infection within the diseased flocks (µ) is presented. It should be

noticed that the posterior estimate of µ is increased from the prior estimate

and that the posterior is more concentrated than the prior; this is because

... . In Fig. 3, the prior and posterior prevalence distributions for the infected

flocks are presented. Here, the mean of the posterior prevalence distribution of

the πi is increased because of the many test-positive results in multiple herds.

Our findings are consistent with those of Gohm et al. (1999) who found a like-

lihood ratio of 56.3 and concluded that 4 flocks were likely infected and that

the Swiss poultry population was not free of ND at the time of the survey.
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4.1.2. Porcine reproductive and respiratory syndrome

In July 1996, a survey for porcine reproductive and respiratory syndrome

(PRRS) was done to verify that Switzerland was free of the pathogen. Sera

were collected from k = 108 herds with n = 5 pigs tested per herd. All samples

were seronegative to PRRS by ELISA (Canon et al 1998).

The priors chosen to reflect the uncertainty in the model parameters were

derived from the literature related to PRRS and the expert opionion of Dr.

Laurent Audigé. The prior on γ was selected with a mode of 0.01 and a 95%

prior interval (0.002, 0.059). The beta prior on the mean within-herd level

prevalence (µ) in the infected herds was chosen with a mode of 0.475 and

interval (0.283, 0.675). The beta prior on the herd level prevalence τ was

chosen with a mode of 0.05 and interval of (0.022, 0.110). The beta prior on

the sensitivity η was chose with mode 0.980 and interval (0.883, 0.995). The

specificity θ was chosen with mode 0.995 and interval (0.965, 0.999).

The posterior analysis indicated that the country was not infected. The pos-

terior probability that the country was infected was P (Z = 1|data) = 0.0012

– indicating that the country was not likely to be infected with PRRS at the

time of the survey. The only model parameters that can be estimated in this

case are the specificity of the test (θ = P (−|D̄)) and an updated estimate of

the initial probability the the country is infected (γ) (Table 3). Note that the

posterior mode for specificity (0.999) is somewhat larger than the prior mode

(0.995). This is to be expected since ... .
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4.2. Simulated data examples

In this section we present the results from the analysis of three simulated data

examples to demonstrate that our method unequivocally can identify a clearly

infected country – but also to show that indeterminate results (0 < P (Z =

1|data) < 1) are possible. Two data sets were created assuming an infected

country. The first data set was produced with clear evidence that the animal

population was infected. The second was produced having few infected herds

and few infected animals within the infected herds (to show the potential for

indeterminate results). We used informative prior distributions to analyze both

data sets (Sections 4.2.1 and 4.2.2). For the mean within herd-level prevalence

in infected herds (µ) we assumed a beta prior with mode 0.30 and a 95% prior

interval of (0.16, 0.50). For the herd level prevalence (τ) we used a beta prior

with mode 0.05 and interval (0.02, 0.11). The prior modes and intervals for

the sensitivity (η) and specificity (θ) were 0.995 (0.989, 0.998). Finally, for the

probability that the country is infected (γ) a prior mode and interval of 0.30

(0.14, 0.54) was used to derive the prior distribution.

We also present a re-analysis of the ND data that were described in Section

4.1.1. The ND data were modified by removing the 4 likely infected flocks

that had at least 10 reactors, leaving the other 256 flocks with 3 or fewer

test-positive birds. This analysis shows a realistic case where indeterminate

results are produced.
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4.2.1. With infected herds

In this scenario, the true herd-level prevalence was τ = 0.25 (which is ex-

tremely implausible under the prior with mode 0.05, which might be consid-

ered miss-specified in this case) and the true mean within herd-level prevalence

for infected herds was µ = 0.60. We produced a data set with k = 100 herds

having exactly 25 truly infected herds, each having 12 infected animals out of

n = 20 sampled from each herd. We added false-positive and false-negative

test results by assuming that the test sensitivity and specificity were both

0.99. Accordingly, there were 3 false-negatives added and 14 false-positive test

results added to the data set. The false positives were randomly placed in 14

of the 75 truly non-infected herds.

Using these data and the informative priors described in Section 4.2, our

analysis correctly identified the country as infected (the posterior probability

of P (Z = 1|data) = 1). The posterior mode for the mean within herd-level

prevalence for the infected herds was µ = 0.57 with a 95% posterior interval of

(0.52, 0.62) and for the herd level prevalence the posterior mode was τ = 0.15

with a 95% posterior interval of (0.11, 0.20). Note that a strong prior for τ ,

that is focused well below the true value, has resulted in a posterior interval

for τ that excludes the true value.

The results of this example are representative of the many simulated data sets

we analyzed. When the proportion of infected herds is moderate to high, and

the proportion of test-positive animals is moderate to high within infected

herds, the country is consistently determined to be infected and the model

parameters are well estimated by the posterior analysis.

As noted in the above illustration, we also found that when an informative
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prior on the herd-level prevalence is used and if the true τ is outside the

plausible range of the prior, the posterior might not concentrate on the true

value. This is because the posterior estimate is generally a weighted average

of the prior guess and a purely data-based estimate. Thus, we recommend the

use of less informative (more dispersed) prior distributions on τ . For example,

if a uniform prior for τ is used in the above analysis we obtained a posterior

mode of 0.25 and the 95% posterior interval was (0.18, 0.34).

4.2.2. Indeterminate case

For the indeterminate scenario, we generated data for an infected country in

which τ = 0.02 and µ = 0.15. We consider data with k = 100, with two herds

selected to be infected. Within these two herds, 3 of the 20 animals samples

were truly infected. The test sensitivity and specificity were both assumed to

be 0.98. No false-negatives and 38 false-positive test results were included in

the data set. One of the false positives was added to an infected herd (making

four test positives for that herd).

The results of the Bayesian analysis were indeterminate. The posterior prob-

ability P (Z = 1|data) = 0.55, and only one herd was detected as infected in

54% of the iterations of the Gibbs sampler. The posterior mode of the mean

within herd-level prevalence for the infected herds (µ) was 0.20 with a 95%

posterior interval of (0.12, 0.35) – which shows a large decrease from the prior

values 0.30 (0.16, 0.50). Note that the true value (0.15) used to create the data

set is included in the posterior interval. The posterior mode of the herd-level

prevalence was 0.03 (0.01, 0.07), which included the true value of τ = 0.02

compared with the prior value of 0.05 (0.02, 0.11).
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Hence, the results of this analysis are equivocal. The country is not clearly

identified as infected and only one herd which was suspected of being infected

is also not clearly identified as being infected. For these types of situations,

increasing the number of herds sampled is recommended – which will produce

data from more infected herds (if they exist) and increase the likelihood of

correctly defining the true status of the country.

4.2.3. Newcastle disease without clearly infected flocks

With the intention of creating a realistic data set that would produce indeter-

minate results, we modified the ND data by removing the test results for the

4 clearly infected flocks. The data set that remained contained 3 flocks with

3 positives, 9 flocks with 2 positives, and 50 flocks with 1 positive test result

and 198 flocks with 0 positives.

To analyze the data, we assumed the same prior information and therefore the

same prior distributions are used as before to analyze the full data set. The

results of the analysis were indeterminate: the P (Z = 1|data) = 0.0835.

5. Conclusions

We have developed and presented a purely Bayesian model that is potentially

useful for evaluating the status of a country or region with respect to freedom

from an animal pathogen. The Bayesian approach incorporates prior knowl-

edge along with the observed data to produce updated posterior inferences. It

is the calculation of the posterior distributions that is the main advancement

over previous work in this area of research. Specifically, posterior distributions
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for both the proportion of infected herds and the within-herd prevalence are

considered to be of greater utility for risk analysts involved in animal trade

than knowledge of a country’s infection status alone (R. Fite, pers. comm.).

Our model allows for 3 levels of inference when the country is infected. If

the country is not likely to be infected, we report the updated estimates of

the initial probability that the country is infected (γ) and the specificity (θ)

and P (Z = 1|data). If the country has a probability of being infected – i.e. if

P (Z = 1|data) is greater than a specified threshold – our analysis produces a

posterior inference for each parameter in the model. We report the country-

level inference P (Z = 1|data), the herd-level prevalence, and the within herd-

level prevalence distribution for the infected herds. In contrast to the models

of Audigé and Beckett (1999) and Audigé et al. (2001), our model does not

require the specification of a cutoff value for the number of reactors to define

a herd as infected. We model the status of the herd with latent data (ti) and

ultimately determine P (ti|data) as a method of assessing the status of each

herd. For the ND and PRRS examples, we make the same conclusions as the

authors of those studies. One of the outputs from our model is an updated

estimate of γ; however, this value changes minimally because it is modified

only by Z = 0 or 1. Thus, prior and posterior inferences for this parameter

generally will be quite similar.

We believe that this model (in conjuction with the software we have developed)

will be a valuable tool for making decisions about the infection status of the

animal populations within countries, and for monitoring changes in prevalence

within infected countries.
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[6] Canon, L., Audigé, L., Denac, H., Griot, C., 1998, Evidence of freedom from

porcine reproductive and respiratory syndrome virus infection in Switzerland.

Veterinary Record 143, 142-143.

19



[7] Casella, G., George, E.I., 1992, Explaining the Gibbs sampler. American

Statistician 46, 167-174.

[8] Gelfand, A.E., Smith, A.F.M., 1990, Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Association 85, 398-409.

[9] Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 1995, Bayesian Data

Analysis. Chapman Hall, New York, 526pp.

[10] Gilks, W.R., Wild, P., 1992, Adaptive rejection sampling for Gibbs sampling.

Applied Statistics, Journal of the Royal Statistical Society 14, 337-348.
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Appendix A. Prior specification for α and β.

We select a beta(aµ, bµ) prior on µ = α/(α + β), the mean value of the beta

distribution on the within-herd level prevalence in the infected herds, {πi}.
We further define ψ = α + β, which is functionally related to the standard

deviation σ =
√

µ(1 − µ)/(ψ + 1). We select a gamma(r, s) for the parameter

ψ with this given specification it is possible to obtain the induced distribu-

tion for (α, β) using the usual transformation technique, Ross (1997). Then
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under the condition that r = aµ + bµ, it follows that α ∼ gamma(aµ, s) and

β ∼ gamma(bµ, s), independently. This makes the Gibbs sampler discussed in

Appendix C particularly easy to develop.

The values aµ and bµ used to determine the prior on µ are determined as

before using expert opinion for the mode, 5th and 95th percentiles for µ. Given

the mode, µ̃, we know (aµ − 1)/(aµ + bµ − 2) = µ̃, solving for bµ, we obtain

bµ =
aµ(1 − µ̃) − 1 + 2µ̃

µ̃
.

In order to select a value of s for the prior on ψ, a best guess for ψ is necessary.

If ψ̃ is given as the mode of the gamma prior, and aµ+bµ = r, then ψ̃ = (r−1)/s

and thus

s = (r − 1)/ψ̃ = (aµ + bµ + 1)/ψ̃. (3)

The selection of ψ̃ is derived using a normal approximation. We consider c∗,

the median of the ψ density given µ = µ̃, e.g.

P (ψ ≤ c∗ | µ = µ̃) = 0.5,

which is the same as

P
(√

(α + β + 1)/[µ(1 − µ)] ≤
√

(c∗ + 1)/[µ(1 − µ)] | µ = µ̃
)

= 0.5,

since ψ = α + β. Now recall that the standard deviation of the gamma distri-

bution is σ =
√

[µ(1 − µ)]/(α + β + 1). Thus

P
(
σ ≥

√
[µ̃(1 − µ̃)]/(c∗ + 1) | µ = µ̃

)
= 0.5.
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Let k̃ =
√

[µ̃(1 − µ̃)]/(c∗ + 1). Now let qα be the (1 − α) percentile of the

prevalence distribution, e.g., 100(1− α)% of the prevalences in infected herds

are smaller than qα. This assumes that qα = µ+ zασ, which would be the case

if the prevalence distribution were approximately normal. Then the above is

approximately equivalent to

P (qα ≥ µ̃ + zαk̃ | µ = µ̃) = 0.5.

Finally if the expert gives his or her best guess for qα, say q̂α, we set q̂α =

µ + zαk̃ and solve for c∗, namely

c∗ =
z2

αµ̃(1 − µ̃)

(qc∗ − µ̃)2
− 1.

Using the median of the prior on ψ as the best guess of ψ, ψ̃ = c∗, which is

substituted into (3).

Appendix B. Joint Distribution of all varaibles.

From the model specification and the choice of priors, the joint distribution

of the model parameters and the latent data, given the country is infected,

Z = 1, is

p({vij}, {ti}, {πi}, (α, β), γ, τ, η, θ|Z = 1)

= p({vij}|Z = 1, {ti}, {πi})p({ti}|Z = 1, τ)

×p({πi}|Z = 1, {ti}, (α, β))p((α, β)|{ti})
×p(γ)p(τ)p(η)p(θ)

=
∏
ij

[
λ

vij

i (1 − λi)
(1−vij)

]ti [
I{0}(vij)

]1−ti
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×
[
I{0}(λi)

]1−ti
k∏

i=1

τ ti(1 − τ)1−ti

×
k∏

i=1

[
Γ(α + β)

Γ(α)Γ(β)
πα−1

i (1 − πi)
β−1

]ti

×p((α, β)|{ti})p(γ)p(τ)p(η)p(θ). (4)

The joint distribution of the parameters and latent data given the country is

non-infected, Z = 0, simplifies to

p({vij}, {ti}, {πi}, (α, β), γ, τ, η, θ|Z = 0)

= p(γ)p(τ)p(η)p(θ). (5)

The joint distribution of the data, latent data, all of the parameters is obtained

from (4) and (5) as

p({Xij}, {vij}, {ti}, {λi}, (α, β), γ, τ, η, θ|Z = 1)

∝ η
∑

Xijvij(1 − η)
∑

(1−Xij)vij

×θ
∑

(1−Xij)(1−vij)(1 − θ)
∑

Xij(1−vij)

×∏
ij

[
λ

vij

i (1 − λi)
(1−vij)

]ti [
I{0}(vij)

]1−ti

×
[
I{0}(λi)

]1−ti
k∏

i=1

τ ti(1 − τ)1−ti

×
k∏

i=1

[
Γ(α + β)

Γ(α)Γ(β)
πα−1

i (1 − πi)
β−1

]ti

×p((α, β)|{ti})p(γ)p(τ)p(η)p(θ). (6)

Similarly, using (2) and (5), the joint distribution conditional on Z = 0 can

be written as

p({Xij}, {vij = 0}, {ti = 0}, {λi = 0}, (α, β), γ, τ, η, θ|Z = 0)

∝

∏

ij

θ(1−Xij)(1 − θ)Xij


 (1 − τ)kp(γ)p(τ)p(θ). (7)
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Appendix C. Full conditional distributions.

The conditional distribution of the infection status of the jth animal within

ith herd, given the country is infected Z = 1, the ith herd is infected, ti = 1,

and the animal has a positive test result, Xij = 1, is

vij|Z = 1, Xij = 1, ti = 1, πi, η, θ ∼ Ber(P (I|Xij = 1)),

where

P (I|Xij = 1) =
ηπi

ηπi + (1 − θ)(1 − πi)
.

The distribution of vij, given the country is infected, the ith herd is infected

and the animal has a negative test result, Xij = 0, is

vij|Z = 1, Xij = 0, ti = 1, πi, η, θ ∼ Ber(P (I|Xij = 0)),

where

P (I|Xij = 0) =
(1 − η)πi

(1 − η)πi + θ(1 − πi)
.

And the distribution of vij for a negative herd is vij|Z = 1, ti = 0 ∼ Ber(0).

And finally, the distribution of vij for a non-infected country is vij|Z = 0 ∼
Ber(0).

Next we present the distribution for the infection status of each herd, con-

ditional on the related parameters in the model. The distribution of each ti,

given the country is infected, Z = 1, and when vij = 1, is

ti|Z = 1,
∑
j

vij > 0 ∼ Ber(1)

or if vij = 0 for all j within herd i and Z = 1, we have
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ti|Z = 1,
∑
j

vij = 0, {πi}, τ ∼ Ber

(
(1 − πi)

nτ

(1 − πi)niτ + 1(1 − τ)

)
.

And finally for a non-infected country, ti|Z = 0 ∼ Ber(0).

The distribution of the within-herd level prevalence, πi, in a infected herd, is

πi|ti = 1, {vij}, (α, β) ∼ Beta


α +

ni∑
j=1

vij, β + ni −
ni∑

j=1

vij


 .

For the case when the ith herd is not infected, ti = 0, there is no information

about πi, therefore πi is not sampled. The parameters (α, β), of the beta

distribution on the within-herd prevalence in the infected herds, are sampled

independently using the method of adaptive rejection (Gilks and Wild, 1992).

The sampling is implemented when two or more herds are positive, i.e.,
∑

ti ≥
2, which gives a log-concave function. The sampled value of α is drawn from

k∏
i=1

[
Γ(α + β)

Γ(α)Γ(β)
πα−1

i (1 − πi)
β−1

]ti

p(α|ti = 1)

and similarly for β.

The remaining parameters in the model all have conditional beta distribu-

tions. The proportion of infected countries that are infected has the following

conditional distribution

γ|Z ∼ Beta (aγ + Z, bγ + 1 − Z) .

The proportion of infected herds has the conditional distribution

τ |Z = 1, {ti} ∼ Beta

(
aτ +

k∑
i=1

ti, bτ + k −
k∑

i=1

ti

)
.

The sensitivity of the diagnostic test used has the conditional distribution
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η|{Xij}, Z = 1, {vij} ∼ Beta


aη +

∑
ij

Xijvij, bη +
∑
ij

(1 − Xij)vij




assuming at least one animal sampled is infected. Otherwise, η is not sampled.

The specificity of the test used has the conditional distribution

θ|{Xij}, {vij} ∼ Beta


aθ +

∑
ij

(1 − Xij)(1 − vij), bθ +
∑
ij

Xij(1 − vij)


 .

And finally, for the country-level infection status if any vij or ti is greater than

zero, then Z = 1 with probability 1, otherwise,

Z|{Xij}, {vij = 0}, {ti = 0}, γ, τ ∼ Ber

(
(1 − τ)kγ

(1 − τ)kγ + 1(1 − γ)

)
.
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Figures

(1) Flowchart of the levels of questions that are asked to elicit information

about the unknown true infection status of a country’s animal population.

Top is the country level, second is the herd level, third is the animal level,

and the test results at the bottom indicate the data collected.

(2) Prior and posterior distribution of the mean, µ, of the prevalence distri-

bution for the analysis of the ND virus survey data from Switzerland.

(3) Estimated prevalence distribution among infected herds, πi|ti = 1, for

the analysis of the ND virus survey data from Switzerland.
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Table 1

Parameters used in the hierarchical model.

Parameter Definition

k number of herds sampled, i = 1, ..., k

ni number of animals sampled within each herd j = 1, ..., ni

Xij test result of jth animal within ith herd

Z true infection-status of the country, infected/not

vij true infection-status of jth animal within ith herd, infected/not

ti true infection-status of the ith herd, infected/not

πi prevalence within the ith herd if infected

(α, β) unknown parameters for the beta distribution of πi

µ average prevalence among infected herds

σ standard deviation of prevalences among the infected herds

λi prevalence for the ith herd (note: λi = πiti)

γ probability Z = 1

τ proportion of infected herds

η sensitivity, P (+|I)

θ specificity, P (−|Ī)
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Table 2

Description of the prior distributions for prevalence and ELISA accuracy for evalu-

ation of the Newcastle disease virus survey data from Switzerland. Posterior modes,

95% intervals and other model outputs from the analysis. See Table 1 for key to

notation.

Prior Posterior

Mode 95% Interval Mean SD Mode 95% Interval Mean SD

τ 0.01 (0.002, 0.059) 0.020 0.149 0.018 (0.007, 0.035) 0.018 0.007

µ 0.30 (0.156, 0.500) 0.315 0.089 0.390 (0.269, 0.512) 0.386 0.062

σ 0.100 - NA - 0.106 (0.089, 0.130) 0.107 0.010

α 5.813 (2.914, 11.775) 6.603 2.284 7.217 (4.161, 12.265) 7.666 2.086

β 13.565 ( 8.531, 21.668) 14.35 3.367 11.62 ( 7.602, 17.640) 12.089 2.567

η 0.995 (0.965, 0.999) 0.988 0.009 0.995 (0.966, 0.999) 0.989 0.009

θ 0.995 (0.977, 0.999) 0.991 0.006 0.990 (0.988, 0.992) 0.990 0.001

γ 0.20 (0.055, 0.551) 0.259 0.131 0.301 (0.100, 0.611) 0.326 0.134
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Table 3

Description of prior distributions for prevalence and ELISA accuracy for evaluation

of PRRS virus survey data from Switzerland. Posterior modes, 95% intervals and

other model outputs from the analysis. See Table 1 for key to notation.

Prior Posterior

Mode 95% Interval Mean SD Mode 95% Interval Mean SD

θ 0.995 (0.965, 0.999) 0.988 0.009 0.999 (0.993, 1.000) 0.998 0.002

γ 0.01 ( 0.002, 0.059) 0.021 0.015 0.016 (0.002, 0.057) 0.021 0.015
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