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Using Computer

Simulation to
Investigate
Relationships
Between the
Sample Mean
and Standard
Deviation

1. Introduction

Computer simulation is an important tool for
probability modeling and statistical analysis. Some
probability computations of great practical im-
portance are too difficult to solve by “doing the
math.” Modern methods of statistical analysis such
as bootstrapping and Gibbs sampling' depend on
computer randomization and simulation.
Simulation methods can also be used in research
and instruction to explore known relationships and
sometimes even to discover unexpected ones. Our
goal is to illustrate this flavor of exploration and dis-
covery. We don’t claim to reveal any research
hreakrhronghs, but some of the things we will show
you were new to us and we hope they will tempt
you to try doing some simulations of your own.

2. When Are the Sample Mean and
Standard Deviation Independent?

Perhaps one of the most important and least
intuitive theorems of classical statistics states that,
for data from a normal population, the sample
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mean X and standard deviation s are independent.?

One reason this fact is important is that the
derivation of Student’s t-distribution depends on it.
In practice, if Xand s are not independent, then tests
of hypothesis and confidence intervals based on the
t-distribution may give misleading results.

However, it seems strange that Xand s would be
independent. Each of these statistics arises from
somewhat different manipulations of the same data
X, X,, ..., X,. The definition and “computation for-
mula” for s even involve X
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Sometimes prools satisfy the intuition as well as
the intellect, but the standard proofs of this inde-
pendence use such methods as multivariate
transformations, matrix manipulations, and moment
generating functions, which have little intuitive
appeal for many students.

Intuitive suspicions about the claimed inde-
pendence of Xand s are not entirely misguided. It is
only for normal data that these statistics are inde-
pendent. And in many real-life situations normality
is more a theoretical ideal than a fact.

In the following sections we explore the inde-
pendence of the sample mean and standard
deviation for simulated data from three distributions:
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Display 1: Minitab Code For the Simulation of Section 1

MTB > name cl 'x1l' ¢2 'x2' ¢c3 'x3' c4 'x4' c5 x5
MTB > name c6 'XBAR' c¢7 'SD'

MTB > # name the columns for data and statistics
MTB > random 10000 'x1' - 'x5°';

SUBC> normal 100 10.

MTB # generate 10000 samples of size 5

MTB rmean 'x1' - 'x5' 'XBAR'

MTB rstdev 'x1’ ‘x5' ‘SD’

# compute mean and std deviation of each row

5
[ve]
Y V.V V V VYV

MTB describe 'XBAR' 'SD' # descriptive statistics
MTB corr 'XBAR' ‘SD‘ # correlation
MTB plot '¥XBAR' * 'SD'; # scatter plot
SUBC> symbol; # change plotting symbol
SUBC> type 5. # from default to dot

e  The mean of ‘SD’ simulates E(s),
normal, exponential, and uniform. The results for

the three distributions are remarkably different.

We use Minitab for the simple simulations in
this article because it is widely available and easy to .
understand. S-Plus is also a suitable software pack-
age for our simulations.? Practical suggestions for
doing these simulations can be found in Section 6.

e The sample correlation of these two columns
simulates the theoretical correlation p(x s)

The scatter plot of these two columns
indicates the nature of the joint distribution of
Xand s.

3. A Simulation With Normal Data

In this section we illustrate the independence of
the sample mean and standard deviation for
samples from a normal distribution.

Simulation plan. In this simulation we repeai-
edly take samples of size n = 5 [rom a normal
population with p = 100 and 6 = 10. (Any mean
and standard deviation would do.)

Each simulated sample runs across one row of
the Minitab worksheet in columns labeled ‘x1’, ‘x2’,
..., ‘x5". For each sample (row), we put xin the sixth
column labeled ‘XBAR’ and s in the seventh column
‘SD.

We repeat (iterate) this sampling procedure
m = 10,000 times. Thus we will use 10,000 rows in
the worksheet. With so many iterations, operations
involving the columns ‘*XBAR’ and 'SD’ simulate the
corresponding theoretical results with satisfactory
accuracy. For example:

e The mean of ‘XBAR’ simulates E(X),

Minitab “program.” Display 1 shows the
Minitab commands necessary to carry out the
planned simulation. Comments follow the #-signs;
these comments are not used by Minitab and you
need not type them when you try this simulation for
yourself.

Simulation results. Display 2 shows the con-
tents of the first two rows of the Minitab worksheet
after one of our runs of the program in Display 1.
You should verify the entries in the columns ‘XBAR’
and ‘SD’ for yourself.

As a “reality check” of the performance of the
program, we look at means and standard deviations
of the ‘XBAR’ column for three runs of this simula-
tion (m = 10,000 each). The results are E(X) =
100.02, 99.948, and 100.03 (the symbol = indicates
simulated as). These results are very close Lo the true
value i = 100. Also SD(X) = 4.46, 4.52, 4.49,
which are not far from the true value 6/n = 10N'5
=4.472.

More to the point of our demonstration, we
obtained the following simulated correlations

Display 2: Example from Minitab Worksheet

cl c2 c3 cd c5 cb c7

x1 - x2 x3 x4 x5 XBAR SD
84.310 100.736 108.214 99.551 103.787 99.3196 9.03325
102.621 94.627 87.565 109.659 111.761 101.247 10.1760
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Figure 1: Sample Means vs Standard Deviations
10,000 samples of size 5 from NORM(100,10)
12w

110
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between ‘XBAR’ and ‘SD’: p = ~0.010, 0.011,
—0.009, all very close to the 0 value one would

- expect for independent Xand s. Of course, it is pos-

sible for associated data to have p = 0. But none of
our scatter plots showed evidence of association. See
Figure 1 for one of these plots.

Certainly, such a plot of Xand s does not provide
a proof of their independence for normal data. But it
does illustrate that their joint distribution has no
clear pattern of association. In Sections 4 and 5 you
will see such clear patterns of association for expo-
nential and uniform data.

Things to try on your own. Above we looked
at summary statistics for ‘XBAR'. If you look at the
means of 'SD’ in several simulation runs, you may be
surprised to see that these simulated values of E(s)
are around 9.40 rather than ¢ = 10. Actually, this is
as it should be. The sample variance s? is an unbiased
estimator of the population variance ¢2; in symbols,
E(s?) = o2. That’s the reason for the n — 1 (instead
of n) in the denominator of s2. But s is not an unbi-
ased estimator of ¢: in fact, forn = 53, E(s) = 0.9400.
(The bias decreases as n increases.)

(a) Aflter running the Minitab program shown in
Display 1, issue the following three commands:

MTB > name c8 ‘'VAR'’
MTB > let 'VAR' = 'SD' * 'SD'
MTB > describe ‘'VAR’

The mean of ‘"VAR’ simulates E(s?), which
should be close to 62 = 100.

(b) More advanced: For any n, notice that
Y = X(X, = X)? / ¢ has a chi-squared distribution
with n — 1 degrees of freedom (df). Show that

E(s) = KE(VY) = KN2 T(n2) / T((n = 1)/2),

where K = 6/(n — 1) and Iis the gamma function.
[Hint: The density of the chi-squared distribution
with n df integrates to 1.] Show that E(s) — ¢ as
n — oo, [Use Stirlings approximation.|

Forn - 5 and 6 = 10, show that E(s) = 9.40.
Also evaluate V(s) = E(s?) - [E(s)]%. In your simula-
tions, is the standard deviation of the ‘SD’ column
close to SD(s) = VV(s)?
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4. A Simulation With Exponential Data

Here we will use simulation to investigate the
association between the sample mean and standard
deviation for random samples of size n = 5 from an
exponential distribution with mean pu = 10.

Simulation plan and Minitab program. Our
simulation plan is similar to the one used in Section
3. We make two changes in the program of Display
1. Most important, we change the subcommand
used with the command random, substituting
exponential 10 for the subcommand used
above to generate normal data. In order to obtain a
more revealing scatter plot, we also increase the
number of iterations to m = 100,000. (If your instal-
lation of Minitab won't handle that much data, use
m = 10,000 as before.)

We said earlier that X and s are independent
only for normal data. We choose the exponential dis-
tribution for our second simulation because it is
strongly skewed to the right, and so some samples
with extremely large observations are likely. (The
exponential distribution takes only positive values,
so no counterbalancing extremely small values can
be observed.) Because both the sample mean and
the standard deviation are inflated when a sample
has large observations, we suspect that large values of
Xwill be associated with large values of s in a pattern
that will make it obvious that Xand s are not inde-
pendent.

Simulation results. Again here, summary sta-
tistics of the column ‘XBAR’ show that the data are
being generated as intended. For X from an expo-
nential distribution, E(X) = SD(X) = pt. Three runs of
our program yield E(X) = 9.9811, 10.013, 9.9934
(consistent with g = 10), and SD(X) = 4.4545,
4.466, 4.4782 (consistent with o/Vn = 105 =
4.472). Furthermore, p = 0.774, 0.775, 0.775,
which leaves no doubt that X and s are correlated
random variables, and hence not independent.

Figure 2, the scatter plot from one of our simu-
lation runs, illustrates this strong positive association
between X and s. It also shows a specific pattern of

Figure 2: Sample Means vs Standard Deviations
100,000 samples of size 5 from EXPO(10)

XBAR
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association that we did not expect the first time we
saw it. While the points seem to scatter upward
without constraint, it looks as if there may be a lin-
ear boundary below. This is not a fluke of one
particular simulation run. Repeated runs show the
same pattern. How does it arise?

With a litde reflection it is clear that for data
from any distribution restricted to positive values,
the sample mean must exceed its standard error —
in symbols, X > s/Vn. This follows directly from the
inequality £X? < (£X)2. With n = 5, the two sides
approach equality when four values are very near 0
and one is relatively large. The exponential distribu-
tion yields this pattern often enough to suggest
where the boundary lies. (On a scatter plot, the loca-
tion of this boundary is easier to see for smaller n and
harder to see for larger n).

Things to try on your own. Here are some
ways to explore further the linear boundary seen in
Figure 2, and a suggestion to look at two sample sta-
tistics that are independent for exponential data.

(a) First, convince yourself that 2X;? < (£X))?
when all X; > 0. [Hint: What terms in the square on
the right are missing from the sum of squares on the
left?] Then prove that X> s/\n. [Start with the “com-
putational formula” for the variance s2.] Give a
numerical example to show that both inequalities
could fail if negative X; were allowed. Finally, for 5
observations from the exponential distribution with
mean 10, say which of the following are positive:
P{X< 5}, P{s > 20}, P{X< 3, s > 20}; and comment.

(b) Do several simulation runs with m = 20,000
samples of size n = 5 from the chi-squared distribu-
tion with 1 degree of freedom. (Use the
subcommand chisqg 1.) This nonnegative, right-
skewed distribution has a heavy concentration of
values very near 0. Thus the simulation should yield
a scatter plot that shows the linear lower boundary
quite distinctly.

(¢) For a sample of size n = 5 from the exponential
distribution with mean 10, let Y| be the minimum
value and Y be the maximum, so that R = Y5 - Y, is the
range. The “no-memory” property of the exponential
distribution implies that Y, and R are independent.
Plan, program, and carry out a simulation to illustrate
this independence. (Use Minitabs row-anthmetic com-
mands rmax and rmin and compute the range by
subtracting.) Validity checks: E(Y,) = SD(Y}) = 2,
E(Ys5) = 22.833, and SD(Y5) = 12.098.

More advanced: Derive the mean and standard
deviation of the maximum and minimum. It is easy
to show that Y, is distributed exponentially with
E(Y)) = SD(Y}) = w/5 = 2. [Find the cumulative dis-
tribution [unction of Y,.] The maximum Y; is not
exponentially distributed, but it is possible to show
that E(Y5) = u(1/5 + 174 + 1/3 + 1/2 + 1) and that
V(Ys5) = pu*(1/25 + 1/16 + 1/9 + 1/4 + 1). [Look at

Figure 3: Sample Means vs Standard Deviations
20,000 samples of size 5 from UNIF(0,1)
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independent increments between the order statistics
Y <Y, <Y<Y, <Ys]

5. A Simulation With Uniform Data

Because of its symmetry, it seems reasonable that
the uniform distribution will yield samples for
which the mean and standard deviation are
uncorrelated random variables. Because of the
theoretical result that Xand s are independent only
for normal data, we wondered whether simulation
methods would reveal a noticeable pattern of
association for uniform data in spite of the lack of
correlation.

Simulation plan and Minitab program. We
choose to sample from the uniform distribution on
the interval (0, 1). The simulation for uniform data
is similar to those in previous sections. In Minitab,
the relevant distributional subcommand for gener-
ating random data is uniform 0 1. In our first
simulation the number of iterations is m = 20,000.

Simulation results. This uniform distribution
has = 1/2 and 6% = 1/12. As expected, means of
‘XBAR' in several simulations were close to 1/2, stan-
dard deviations of ‘XBAR" were close to 1/V60 =
0.129, and correlations of ‘XBAR’ and ‘SD’ were close
10 0.

Figure 3 does indeed show a pattern of asso-
ciation. As the standard deviation increases, the
mean is restricted to the vicinity of 1/2. But there are
some curious “lurmps” and straggling clusters of
points at the right side of the scatter plot. One of the
challenges in dealing with simulations is to separate
the signal from the noise. If we see something sur-
prising, is it a random anomaly of one run or
something worth looking into? In several more runs
of the simulation we saw similar irregularities, always
in about the same places. What is going on here?

We increased the number of iterations to m =
200,000 and tried again. One of the scatter plots
from the larger simulation is shown in Figure 4. Here
the random-looking straggles and lumps of Figure 3
have been resolved into clearly-defined “horns” that
cannot be dismissed as accidental. The pattern of
association between Xand s is more intricate than we
first supposed.
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Figure 4. Sample Means vs Standard Deviations
200,000 sampiles of size 5 from U(0,1)
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The explanation of the horns in Figure 4 is that
they are images under transformation of the corners
of the 5-dimensional hypercube in which 5 inde-
pendent observations from the unit interval lie.

Things to try on your own

(a) A 5-dimensional hypercube has 32 corners.
They correspond to data consisting entirely of Os or
1s. One of the two horns at the far right in Figure 4
vortesponds o samples that have three observations
close to 1 and two close to 0, so that Xis near 0.6 and
s 1s near 0.5477. Such data points are found near 10
of the 32 corners of the hypercube. (Why 10?) Some
combinations of Os and 1s match fewer corners
(have smaller “multiplicities”) and so make less-dis-
tinct horns. Including the two at the top and botiom
corners on the left side of the scatter plot, there are
6 horns in the scatter plot. Can you find the multi-
plicity of each, accounting for all 32 corners?

(b) Try simulations using the uniform distri-
bution with m = 20,000 and n = 2, 3, and 4. How
many horns do you see (on the right) in each?

(c) A beia distribution with parameters o = f§ =
1/2 has relatively more values near 0 and 1 than does

the uniform distribution on (0, 1). Try a simulation
with m = 10,000 and n = 5 (subcommand beta
.5 .5). Compare with Figure 3.

(d) Plan, program, and execute a simulation to
explore whether the range and the midrange (aver-
age of the maximum and minimum) are correlated
for uniform data. Are they independent? Use m =
20,000 and n = 5.

6. Nuts and Bolts of Simulation

This section gives some information to assist you in
doing simulations of the kind shown above. The
speed and memory capacity of computers in
general use is increasing rapidly. A few years ago
simulations of the scope suggested here would
have put unrealistic demands on the computers
available to most undergraduate students, and a
few years from now they will probably seem tiny.
We used Minitab 13 and S-Plus 2000 (profes-
sional) on a 700 MHz computer with 128 MB of
RAM.? (Student versions of Minitab are of limited
use for simulation because of their restricted
worksheet capacity.) For your simulations, first try
to use the values of m suggested here, adjusting
downward or upward as necessary or desirable.
Minitab. It is not necessary to retype a sequence
of commands each time it is used. You can highlight
commands in the Session window, and cut (CTRL-C)
and paste (CTRL-V) them to the active MTB >
prompt at the end of the Session Window. You can
also cut and paste commands recorded in the History
window or composed in a text editor. (When you
paste, the copied prompts will disappear temporar-
ily.) If desired, you can modify pasted commands
before pressing ENTER. When you are ready to run
the simulation, move the cursor to the very end of the
block of pasted/ edited text and press ENTER.

XBAR <- apply(X, 1, mean)
VAR <- apply(X, 1, wvar)

SD <~ sqgrt (VAR)
summary (XBAR)
sqgrt (var (XBAR) )

summary {SD)
cor (XBAR, SD) # correlation
plot (SD, XBAR, pch=".")

Display 3: S-Plus Code For the Simulation of Section 1

m <- 10000 # iterations (samples)

n <- 5 # sample size

k <- m*n # total random data values
X <- matrix{rnorm{(k, 100, 10), m, n)

# simulated normal data into an m by n matrix

# arg. 1 indicates a matrix row operation.

# some versions accept: colStdevs (XBAR)

# dot instead of default circle in plots
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A more sophisticated approach would be to
write a Minitab macro.? For example, after a test run,
cut and paste the commands of Display 1 into
Notepad; add two lines 10 the beginning: gmacro
and template; one line to the end: endmacro;
and save as a: \normsim.mac (no .txt extension).
Then you can run the macro from a MTE > prompt
by typing %a: \normsim.mac. (If you are not
familiar with macros, you may need to read Minitab,
or even Windows, documentation.)

S-Plus. S-Plus is a widely used statistical soft-
ware package. If you are not yet familiar with it, the
simple simulations of this article are good first pro-
jects for becoming acquainted.? * For us, some of
the simulations ran slowly 1n 5-Plus, the one shown
in Figure 4 at “coffee-break” speed.

Names of functions and objects are case sen-
sitive in S-Plus: SD and sd would be different
variables, sqrt is a built-in function and Sqgrt is
not. The summary function gives the “S-number
summary” plus the mean, but not the standard de-
viation. If needed, request variances or standard
deviations separately.

Display 3 shows an S-Plus program for the sim-
ulation in Display 1. This program should be typed
into a new Script window for the first simulation,
and later saved or modified as desired. (Comments,
indicated by #-symbols, need not be typed.) Press
F10 to run the program.

For suggested modifications of this program, the
following functions simulate the obvious distribu-
tions: rexp(),* rchisqg(), runif(),
rbeta (). As shown in Display 3 for rnorm{(),
the first argument in parentheses is the number of
observations to be generated and subsequent argu-
ments, separated by commas, provide the
parameters. (In S-Plus, the parameter of the expo-
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nential distribution is its rate 1/)1.) Functions such as
max and min work with apply as shown in Dis-
play 3 for mean and var.
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